• Title/Summary/Keyword: carbon dioxide emissions

Search Result 460, Processing Time 0.022 seconds

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.63-76
    • /
    • 2015
  • The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.

Developing Predictive Modelling of CO2 Emissions of Construction Equipment Using Artificial Neural Network and Non-linear Regression (인공신경망 및 비선형 회귀분석을 이용한 건설장비의 CO2 배출량 예측 모델 개발)

  • Im, Somin;Noh, Jaeyun;Ro, Sangwoo;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.16-17
    • /
    • 2019
  • In order to measure the amount of carbon dioxide emitted from the construction sites, many literature which have been conducted have proposed methodologies for calculating coefficients based on actual data collections for estimating the emission formula. The existing data collected under controlled conditions not on site measurement were too limited to apply in actual sites. The purpose of this study is to conduct analysis based on the data measured in fields and to present predictive models using artificial neural network and nonlinear regression analysis for appropriate predictions and practical applications.

  • PDF

Analyzing the Strength Development of Concrete with Function of Non-Sintered Hwangto Admixture Ratio at Early Ages (초기 재령에서 비소성 황토 혼입율에 따른 콘크리트의 강도 발현 분석)

  • Kim, Tae-Hyung;Kim, Won-Chang;Choi, Hyung-Gil;Choi, Hee-Yong;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.39-40
    • /
    • 2023
  • In this study, the compressive strength development was analyzed at early ages of concrete specimens admixed with non-sintered hwangto to reduce the CO2 emissions generated during cement production. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at three levels of 15, 30, and 45%, and the compressive strength were measured at 1, 3, 7, and 28 days. The results showed that the compressive strength decreases as the percentage of non-sintered hwangto increases, but the strength development rate increases, and the NHTC41-15 test specimen developed a compressive strength close to NC41 at 28 days.

  • PDF

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

A Study on Developing Smart Component through the Analysis on Architectural Scheduling and internal Material (건축공종 및 내부자재별 친환경평가 분석을 통한 Smart Component 개발에 관한 연구)

  • Kim, Jae-Won;Jeong, Byung-Woo;Kim, Sun-Seek;Lee, Sang-Hyo;Park, In-Suk;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.619-623
    • /
    • 2006
  • When it comes environmental preservation and economic development throughout all the industries, it is adopted to regulate carbon dioxide emissions in United Nations Framework Convention on Climate Change. And we must be responsible for promoting the eco-friendly and sustainable development because of a registration of the Kyoto protocol. Almost all the domestic buildings have many problems that not only waste the resources and architectural energy, but also are not enough to recycling of the waste. So m this study the environment-friendship is estimated through assuming carbon dioxide emissions. And after indicators are derived through surveying the residential satisfaction, it is carefully thought to develop the Smart Component that increase the length of life and the flexibility and improve the comfortable circumstance in buildings.

  • PDF

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

Retrofit of a UK residential property to achieve nearly zero energy building standard

  • Salem, Radwa;Bahadori-Jahromi, Ali;Mylona, Anastasia;Godfrey, Paulina;Cook, Darren
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.13-28
    • /
    • 2018
  • It is currently agreed upon that one of the major challenges in the construction industry is the energy efficiency of existing buildings. The World Meteorological Organisation (WMO) and United Nations (UN) have reported that the concentration of global atmospheric carbon dioxide has increased by an average of 50%, a record speed, from 2015 to 2016. The housing sector contributes to 45% of the UK's carbon emissions. To help tackle some of those issues the recast Energy Performance Building Directive (EBPD) has introduced Nearly Zero Energy Buildings (NZEBs) in the coming years (including buildings that will undergo refurbishment/renovations). This paper will explore the retrofitting of a UK residential dwelling using Thermal Analysis Simulation (TAS, EDSL) software by focusing on building fabric improvements and usage of on-site renewables. The CIBSE Test Reference Year (TRY) weather data has been selected to examine the performance of the building under current and future climate projections. The proposed design variables were finally implemented in the building altogether on TAS. The simulation results showed a reduction in the building's annual energy consumption of $122.64kWh/m^2$ (90.24%). The greatest savings after this were achieved for the annual reduction in carbon emissions and avoided emissions, which were 84.59% and $816.47kg/CO_2$, respectively.

Extraction of Spatial Information of Tree Using LIDAR Data in Urban Area (라이다 자료를 이용한 도시지역의 수목공간정보 추출)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • In situation that carbon dioxide emissions are being increased as urbanization, urban green space is being promoted as an alternative to find solution for these problems. In urban areas, trees have the ability to reduce carbon dioxide as well as to be aesthetic effect. In this study, we proposed the methodology which uses only LIDAR data in order to extract these trees information effectively. To improve the operational efficiency according to the extraction of trees, the proposed methodology was carried out using multiple data processing such as point, polygon and raster. Because the existing NDSM(Normalized Digital Surface Model) contains both the building and tree information, it has the problems of high complexity of data processing for extracting trees. Therefore, in order to improve these problems, this study used modified NDSM which was removed estimate regions of building. To evaluate the performance of the proposed methodology, three different zones which coexist buildings and trees within urban areas were selected and the accuracy of extracted trees was compared with the image taken by digital camera.

A Study on the Emission Characteristics of Greenhouse Gas by Cumulative Mileage of Gasoline Vehicle (가솔린 차량의 누적주행거리에 따른 온실가스 배출특성 연구)

  • Park, Jin-sung;Lim, Jae-Hyuk;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • An automobile is composed of a combination of a lot of parts, and it is difficult to maintain the same performance from a new car until it's scrapped. Greenhouse gases included in automobile emissions are typically carbon dioxide and methane. It is expected that this greenhouse gas will change depending on the aging (cumulative mileage) of the automobile However, the greenhouse gas characteristics by cumulative mileage lack of actual data due to time and economic difficulties. Therefore, in this paper, we selected automobile with high sales by displacement in korea and carbon dioxide and methane were measured by using method of the related law. The cumulative mileage is as follows; within 160 km (Statutory mileage by 2010), 6500 km (current statutory mileage), 15000 km (approximately 1-year average mileage of Non-business passenger vehicle). As a result of the test, the emission of carbon dioxide and methane was the smallest at 6,500 km, and increased in order of 15000 km, within 160 km. Also, it was confirmed that the $CO_2$ emission change of a large displacement automobile is more smaller at each mileage. Although the greenhouse gas tends to increase as the mileage of the vehicle, it is thought that additional confirmation is required of since 15,000 km as well, because it can occur deviations due to taming process or mechanical friction of the automobile.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.