Browse > Article
http://dx.doi.org/10.12989/amr.2015.4.2.063

Urgency of LiFePO4 as cathode material for Li-ion batteries  

Guo, Kelvii Wei (Department of Mechanical and Biomedical Engineering, City University of Hong Kong)
Publication Information
Advances in materials Research / v.4, no.2, 2015 , pp. 63-76 More about this Journal
Abstract
The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.
Keywords
$LiFePO_4$; cathode material; Li-ion batteries; nanotechnology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun, J.P., Tang, K., Yu, X.Q., Li, H. and Huang, X.J. (2009), "Needle-like $LiFePO_4$ thin films prepared by an off-axis pulsed laser deposition technique", Thin. Solid. Films., 517(8), 2618-2622.   DOI
2 Tarascon, J.M. and Armand, M. (2001), "Issues and challenges facing rechargeable lithium batteries", Nature., 414(6861), 359-367.   DOI
3 Thackeray, M. (2002), "Lithium-ion batteries - An unexpected conductor", Nat. Mater., 1(2), 81-82.   DOI
4 Thackeray, M.M., David, W.I.F., Bruce, P.G. and Goodenough, J.B. (1983), "Lithium insertion into manganese spinels", Mater. Res. Bull., 18(4), 461-472.   DOI
5 Tollefson, J. (2008), "Car industry: Charging up the future", Nature., 456(7221), 436-440.   DOI
6 Wagemaker, M., Mulder, F.M. and Van der Ven, A. (2009), "The role of surface and interface energy on phase stability of nanosized insertion compounds", Adv. Mater., 21(25-26), 2703-2709.   DOI
7 Wakihara, M. and Yamamoto, O. (1998), Lithium Ion Batteries: Fundamentals And Performance, Wiley-VCH, Tokyo, Kodansha,Weinheim, Chichester.
8 Wang, G.X., Shen, X.P. and Yao, J. (2009), "One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance", J. Power. Sources., 189(1), 543-546.   DOI
9 Wang, J.Z., Chou, S.L., Chen, J., Chew, S.Y., Wang, G.X., Konstantinov, K., Wu, J., Dou, S.X. and Liu, H.K. (2008), "Paper-like free-standing polypyrrole and polypyrrole-$LiFePO_4$ composite films for flexible and bendable rechargeable battery", Electrochem. Commun., 10(11), 1781-1784.   DOI
10 Amatucci, G.G., Tarascon, J.M. and Klein, L.C. (1996), "$CoO_2$, the end member of the $LixCoO_2$ solid solution", J. Electrochem. Soc., 143(3), 1114-1123.   DOI
11 Amin, R., Balaya, P. and Maier, J. (2007), "Anisotropy of electronic and ionic transport in $LiFePO_4$ single crystals", Electrochem. Solid. St., 10(1), A13-A16.   DOI
12 Andersson, A.S. and Thomas, J.O. (2001), "The source of first-cycle capacity loss in $LiFePO_4$", J. Power. Sources., 97-98, 498-502.   DOI
13 Whittingham, M.S. (2004), "Lithium batteries and cathode materials", Chem. Rev., 104(10), 4271-4301.   DOI
14 Wang, L., Zhou, F., Meng, Y.S. and Ceder, G. (2007), "First-principles study of surface properties of $LiFePO_4$: surface energy, structure, wulff shape and surface redox potential", Phys. Rev. B., 76(16), 165435.   DOI
15 Wang, Y. and Cao, G.Z. (2008), "Developments in nanostructured cathode materials for high performance lithium-ion batteries", Adv. Mater., 20(12), 2251-2269.   DOI
16 Wang, Z.L., Su, S.R., Yu, C.Y., Chen, Y. and Xia, D.G. (2008), "Synthesises, characterizations and electrochemical properties of spherical-like $LiFePO_4$ by hydrothermal method", J. Power. Sources., 184(2), 633-636.   DOI
17 Whittingham, M.S. (2008), "Materials challenges facing electronic energy storage", Mrs. Bull., 33(4), 411-419.   DOI
18 Wikipedia Encyclopedia. "Green House Gas", http://en.wikipedia.org/wiki/Greenhouse_gas.
19 Wilcox, J.D., Doeff, M.M., Marcinek, M., Kostecki, R. (2007), "Factors influencing the quality of carbon coatings on $LiFePO_4$", J. Electrochem. Soc., 154(5), A389-A395.   DOI
20 Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, Y.Q. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389.   DOI
21 Xie, H.M., Wang, R.S., Ying, J.R., Zhang, L.Y., Jalbout, A.F., Yu, H.Y., Yang, G.L., Pan, X.M. and Su, Z.M. (2006), "Optimized $LiFePO_4$-polyacene cathode material for lithium-ion batteries", Adv. Mater., 18(19), 2609.   DOI
22 Basic research needs for electronic energy storage (2007), "Report of the basic energy sciences workshop on electronic energy storage", http://www.er.doe.gov/bes/reports/files/EES_rpt.pdf., April 2-4.
23 Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M. and Van Schalkwijk, W. (2005), "Nanostructured materials for advanced energy conversion and storage devices", Nat. Mater., 4(5), 366-377.   DOI
24 Armand, M. and Tarascon, J.M. (2008), "Building better batteries", Nature., 451(7179), 652-657.   DOI
25 Balbuena, P.B. and Wang, Y.X. (2004), Lithium-ion Batteries: Solid-Electrolyte Interphase, Imperial College Press, London.
26 Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000), "Thin-film lithium and lithium-ion batteries", Solid. State. Ionics., 135(1-4), 33-45.   DOI
27 Caballero, A., Cruz-Yusta, M., Morales, J., Santos-Pena, J. and Rodriguez-Castellon, E. (2006), "A new and fast synthesis of nanosized $LiFePO_4$ electrode materials", Eur. J. Inorg. Chem., 9, 1758-1764.
28 Chen, G.Y., Song, X.Y. and Richardson, T.J. (2006), "Electron microscopy study of the $LiFePO_4$ to $FePO_4$ phase transition", Electrochem. Solid. St., 9(6), 295-298.   DOI
29 Chen, J., Wang, S. and Whittingham, M.S. (2007), "Hydrothermal synthesis of cathode materials", J. Power. Sources., 174(2), 442-448.   DOI
30 Chen, Y.K., Okada, S. and Yamaki, J. (2004), "Preparation and characterization of $LiFePO_4$/Ag composite for Li-ion batteries", Compos. Interface., 11(3), 277-283.   DOI
31 Yang, S.F., Zavalij, P.Y. and Whittingham, M.S. (2001), "Hydrothermal synthesis of lithium iron phosphate cathodes", Electrochem. Commun., 3(9), 505-508.   DOI
32 Xu, C.B., Lee, J. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water", J. Supercrit. Fluid., 44(1), 92-97.   DOI
33 Yamada, A., Chung, S.C. and Hinokuma, K. (2001), "Optimized $LiFePO_4$ for lithium battery cathodes", J. Electrochem. Soc., 148(3), 224-229.   DOI
34 Yang, H., Wu, X.L., Cao, M.H. and Guo, Y.G. (2009), "Solvothermal synthesis of $LiFePO_4$ hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in Lithium-ion batteries", J. Phys. Chem. C., 113(8), 3345-3351.   DOI
35 Croce, F., Epifanio, A.D., Hassoun, J., Deptula, A., Olczac, T. and Scrosati, B. (2002), "A novel concept for the synthesis of an improved $LiFePO_4$ lithium battery cathode", Electrochem. Solid. St., 5(3), 47-50.
36 Chen, Z.H. and Dahn, J.R. (2002), "Reducing carbon in $LiFePO_4$/C composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149(9), 1184-1189.   DOI
37 Chiu, K.F. and Chen, P.Y. (2008), "Structural evolution and electrochemical performance of $LiFePO_4$/C thin films deposited by ionized magnetron sputtering", Surf. Coat. Tech., 203(5-7), 872-875.   DOI
38 Chung, S.Y., Bloking, J.T. and Chiang, Y.M. (2002), "Electronically conductive phospho-olivines as lithium storage electrodes", Nat. Mater., 1(2), 123-128.   DOI
39 Delacourt, C., Poizot, P., Levasseur, S. and Masquelier, C. (2006), "Size effects on carbon-free $LiFePO_4$ powders", Electrochem. Solid. St., 9(7), 352-355.   DOI
40 Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. and Weill, F. (2008), "Lithium deintercalation in $LiFePO_4$ nanoparticles via a domino-cascade model", Nat. Mater., 7(8), 665-671.   DOI
41 Doherty, C.M., Caruso, R.A., Smarsly, B.M. and Drummond, C.J. (2009), "Colloidal crystal templating to produce hierarchically porous $LiFePO_4$ electrode materials for high power lithium ion batteries", Chem. Mater., 21(13), 2895-2903.   DOI
42 Dokko, K., Koizumi, S. and Kanamura, K. (2006), "Electrochemical reactivity of $LiFePO_4$ prepared by hydrothermal method", Chem. Lett., 35(3), 338-339.   DOI
43 Ellis, B., Kan, W.H., Makahnouk, W.R.M. and Nazar, L.F. (2007), "Synthesis of nanocrystals and morphology control of hydrothermally prepared $LiFePO_4$", J. Mater. Chem., 17(30), 3248-3254.   DOI
44 Dokko, K., Koizumi, S., Nakano, H. and Kanamura, K. (2007), "Particle morphology, crystal orientation, and electrochemical reactivity of $LiFePO_4$ synthesized by the hydrothermal method at 443 K", J. Mater. Chem., 17(45), 4803-4810.   DOI
45 Dominko, R., Bele, M., Goupil, J.M., Gaberscek, M., Hanzel, D., Arcon, I. and Jamnik, J. (2007), "Wired porous cathode materials: A novel concept for synthesis of $LiFePO_4$", Chem. Mater., 19(12), 2960-2969.   DOI
46 Dominko, R., Goupil, J.M., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D. and Jamnik J. (2005), "Impact of $LiFePO_4$/C composites porosity on their electrochemical performance", J. Electrochem. Soc., 152(5), 858-863.   DOI
47 Fisher, C.A.J. and Islam, M.S. (2008), "Surface structures and crystal morphologies of $LiFePO_4$: relevance to electrochemical behaviour", J. Mater. Chem., 18(11), 1209-1215.   DOI
48 Franger, S., Le Cras, F., Bourbon, C. and Rouault, H. (2003), "Comparison between different $LiFePO_4$ synthesis routes and their influence on its physico-chemical properties", J. Power. Sources., 119, 252-257.
49 Gaberscek, M., Dominko, R., Bele, M., Remskar, M., Hanzel, D. and Jamnik, J. (2005), "Porous, carbon-decorated $LiFePO_4$ prepared by sol-gel method based on citric acid", Solid. State. Ionics., 176(19-22), 1801-1805.   DOI
50 Gaberscek, M., Kuzma, M. and Jamnik, J. (2007), "Electrochemical kinetics of porous, carbondecorated $LiFePO_4$ cathodes: separation of wiring effects from solid state diffusion", Phys. Chem. Chem. Phys., 9(15), 1815-1820.   DOI
51 Hong, J., Wang, C.S., Dudney, N.J. and Lance, M.J. (2007), "Characterization and performance of $LiFePO_4$ thin-film cathodes prepared with radio-frequency magnetron-sputter deposition", J. Electrochem. Soc., 154(8), A805-A809.   DOI
52 Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.M. and Masquelier, C. (2008), "Room-temperature single-phase Li insertion/extraction in nanoscale $LixFePO_4$", Nat. Mater., 7(9), 741-747.   DOI
53 Goodenough, J.B. (2007), "Cathode materials: a personal perspective", J. Power. Sources., 174(2), 996-1000.   DOI
54 Herle, P.S., Ellis, B., Coombs, N. and Nazar, L.F. (2004), "Nano-network electronic conduction in iron and nickel olivine phosphates", Nat. Mater., 3(3), 147-152.   DOI
55 Huang, H., Yin, S.C. and Nazar, L.F. (2001), "Approaching theoretical capacity of $LiFePO_4$ at room temperature at high rates", Electrochem. Solid. St., 4(10), A170-A172.   DOI
56 Huang, Y.H. and Goodenough, J.B. (2008), "High-rate $LiFePO_4$ lithium rechargeable battery promoted by electrochemically active polymers", Chem. Mater., 20(23), 7237-7241.   DOI
57 Huang, Y.H., Park, K.S. and Goodenough, J.B. (2006), "Improving lithium batteries by tethering carbon-coated $LiFePO_4$ to polypyrrole", J. Electrochem. Soc., 153(12), A2282-A2286.   DOI
58 Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J. and Maier, J. (2007), "Improved electrode performance of porous $LiFePO_4$ using $RuO_2$ as an oxidic nanoscale interconnect", Adv. Mater., 19(15), 1963-1966.   DOI
59 Islam, M.S., Driscoll, D.J., Fisher, C.A.J. and Slater, P.R. (2005), "Atomic-scale investigation of defects, dopants and lithium transport in the $LiFePO_4$ olivine-type battery material", Chem. Mater., 17(20), 5085-5092.   DOI
60 Iriyama, Y., Yokoyama, M., Yada, C., Jeong, S.K., Yamada, I., Abe, T., Inaba, M. and Ogumi, Z. (2004), "Preparation of $LiFePO_4$ thin films by pulsed laser deposition and their electrochemical properties", Electrochem. Solid. St., 7(10), 340-342.   DOI
61 Kang, B. and Ceder, G. (2009), "Battery materials for ultrafast charging and discharging", Nature., 458(7235), 190-193.   DOI
62 Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T. and Yamada, A. (2009), "Isolation of solid solution phases in size-controlled $LixFePO_4$ at room temperature", Adv. Funct. Mater., 19(3), 395-403.   DOI
63 Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C. and Tarascon, J.M. (2006), "Study of the $LiFePO_4$/$FePO_4$ two-phase system by high-resolution electron energy loss spectroscopy", Chem. Mater., 18(23), 5520-5529.   DOI
64 Lee, K.T., Kan, W.H. and Nazar, L.F. (2009), "Proof of intercrystallite ionic transport in $LiMPO_4$ electrodes (M = Fe, Mn)", J. Am. Chem. Soc., 131(17), 6044-6045.   DOI
65 Li, C.L. and Fu, Z.W. (2007), "Kinetics of $Li^+$ ion diffusion into $FePO_4$ and FePON thin films characterized by AC impedance spectroscopy", J. Electrochem. Soc., 154(8), 784-791.   DOI
66 Lim, S.Y., Yoon, C.S. and Cho, J.P. (2008), "Synthesis of nanowire and hollow $LiFePO_4$ cathodes for high-performance lithium batteries", Chem. Mater., 20(14), 4560-4564.   DOI
67 Meethong, N., Kao, Y.H., Speakman, S.A. and Chiang, Y.M. (2009), "Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties", Adv. Funct. Mater., 19(7), 1060-1070.   DOI
68 Matsumura, T., Imanishi, N., Hirano, A., Sonoyama, N. and Takeda, Y. (2008), "Electrochemical performances for preferred oriented PLD thin-film electrodes of $LiNi_{0.8}Co_{0.2}O_2$, $LiFePO_4$ and $LiMn_2O_4$", Solid. State. Ionics., 179(35-36), 2011-2015.   DOI
69 Meethong, N., Huang, H.Y.S., Carter, W.C. and Chiang, Y.M. (2007a), "Size-dependent lithium miscibility gap in nanoscale $Li_{1-x}FePO_4$", Electrochem. Solid. St., 10(5), 134-138.
70 Meethong, N., Huang, H.Y.S., Speakman, S.A., Carter, W.C. and Chiang, Y.M. (2007b), "Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries", Adv. Funct. Mater., 17(7), 1115-1123.   DOI
71 Mi, C.H., Cao, Y., Zhang, X.G., Zhao, X.B. and Li, H.L. (2008), "Synthesis and characterization of $LiFePO_4$/(Ag+C) composite cathodes with nano-carbon webs", Powder. Technol., 181(3), 301-306.   DOI
72 Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B. (1980), "$LixCoO_2$-a new cathode material for batteries of high-energy density", Mater. Res. Bull., 15(6), 783-789.   DOI
73 Morales, J., Santos-Pena, J., Rodriguez-Castellon, E. and Franger, S. (2007), "Antagonistic effects of copper on the electrochemical performance of $LiFePO_4$", Electrochim. Acta., 53(2), 920-926.   DOI
74 Morgan, D., Van der Ven, A. and Ceder, G. (2004), "Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials", Electrochem. Solid. St., 7(2), 30-32.   DOI
75 Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S. and Goodenough, J.B. (1997b), "Effect of structure on the $Fe^{3+}/Fe^{2+}$ redox couple in iron phosphates", J. Electrochem. Soc., 144(5), 1609-1613.   DOI
76 Murugan, A.V., Muraliganth, T. and Manthiram, A. (2008), "Comparison of microwave assisted solvothermal and hydrothermal syntheses of $LiFePO_4$/C nanocomposite cathodes for lithium ion batteries", J. Phys. Chem. C., 112(37), 14665-14671.   DOI
77 Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M. and Yamada, A. (2008), "Experimental visualization of lithium diffusion in $LixFePO_4$", Nat. Mater., 7(9), 707-711.   DOI
78 Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997a), "Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries", J. Electrochem. Soc., 144(4), 1188-1194.   DOI
79 Park, K.S., Schougaard, S.B. and Goodenough, J.B. (2007), "Conducting-polymer/iron-redoxcouple composite cathodes for lithium secondary batteries", Adv. Mater., 19(6), 848.
80 Park, K.S., Son, J.T., Chung, H.T., Kim, S.J., Lee, C.H., Kang, K.T. and Kim, H.G. (2004), "Surface modification by silver coating for improving electrochemical properties of $LiFePO_4$", Solid. State. Commun., 129(5), 311-314.   DOI
81 Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M. and Armand, M. (2001), "Electroactivity of natural and synthetic triphylite", J. Power. Sources., 97-98, 503-507.   DOI
82 Recham, N., Armand, M., Laffont, L. and Tarascon, J.M. (2009a), "Eco-efficient synthesis of $LiFePO_4$ with different morphologies for Li-ion batteries", Electrochem. Solid. St., 12(2), 39-44.
83 Sauvage, F., Baudrin, E., Morcrette, M. and Tarascon, J.M. (2004), "Pulsed laser deposition and electrochemical properties of $LiFePO_4$ thin films", Electrochem. Solid. St., 7(1), 15-18.
84 Recham, N., Dupont, L., Courty, M., Djellab, K., Larcher, D., Armand, M. and Tarascon, J.M. (2009b), "Ionothermal synthesis of tailor-made $LiFePO_4$ powders for Li-ion battery applications", Chem. Mater., 21(6), 1096-1107.   DOI
85 Rho, Y.H., Nazar, L.F., Perry, L. and Ryan, D. (2007), "Surface chemistry of $LiFePO_4$ studied by mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties", J. Electrochem. Soc., 154(4), 283-289.
86 Saravanan, K., Reddy, M.V., Balaya, P., Gong, H., Chowdari, B.V.R. and Vittal, J.J. (2009), "Storage performance of $LiFePO_4$ nanoplates", J. Mater. Chem., 19(5), 605-610.   DOI
87 Sauvage, F., Laffont, L., Tarascon, J.M. and Baudrin, E. (2008a), "Factors affecting the electrochemical reactivity vs. lithium of carbon-free $LiFePO_4$ thin films", J. Power. Sources., 175(1), 495-501.   DOI
88 Sauvage, F., Tarascon, J.M. and Baudrin, E. (2008b), "Formation of autonomous ion sensors based on ion insertion-type materials", J. Appl. Electrochem., 38(6), 803-808.   DOI
89 Song, S.W., Reade, R.P., Kostecki, R. and Striebel, K.A. (2006), "Electrochemical studies of the $LiFePO_4$ thin films prepared with pulsed laser deposition", J. Electrochem. Soc., 153(1), 12-19.
90 Srinivasan, V. and Newman, J. (2004), "Discharge model for the lithium iron-phosphate electrode", J. Electrochem. Soc., 151(10), 1517-1529.   DOI