• 제목/요약/키워드: carbon deposition

검색결과 1,231건 처리시간 0.028초

플라즈마 CVD 를 이용한 탄소나노튜브의 성장 (Growth of Carbon Nanotubes using Plasma-Enhanced Chemical Vapor Deposition)

  • 방윤영;장원석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1236-1239
    • /
    • 2005
  • Aligned carbon nanotubes(CNTs) array were synthesized using DC plasma-enhanced chemical vapor deposition. Silicon substrate Ni-coated of 5nm thickness were pretreated by $NH_3$ gas with a flow rate of 180sccm, for 10min. CNTs were grown on the pretreated substrates at $30%\;C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters from 60 to 80 nanometers and lengths about 2.7 micrometers were obtained. Vertical alignment of carbon nanotubes were observed by FESEM.

  • PDF

Overlook of current chemical vapor deposition-grown large single-crystal graphene domains

  • Park, Kyung Tae;Kim, Taehoon;Park, Chong Rae
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.151-161
    • /
    • 2014
  • Exceptional progress has been made with chemical vapor deposition (CVD) of graphene in the past few years. Not only has good monolayer growth of graphene been achieved, but large-area synthesis of graphene sheets has been successful too. However, the polycrystalline nature of CVD graphene is hampering further progress as graphene property degrades due to presence of grain boundaries. This review will cover factors that affect nucleation of graphene and how other scientists sought to obtain large graphene domains. In addition, the limitation of the current research trend will be touched upon as well.

Influence of Mg Vapor Pressure on the $MgB_2$/Carbon Fiber Fabricated by Physical Vapor Deposition method

  • Li, Xiang;Ha, Hong-Soo;Kim, Cheol-Jin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권4호
    • /
    • pp.5-9
    • /
    • 2011
  • We have fabricated the superconducting $MgB_2$/carbon fiber by physical vapor deposition method. Mg (Magnesium) and B (Boron) were simultaneously deposited on the carbon fiber using the RF-sputtering and thermal evaporation, respectively. To ensure the relatively high vapor pressure of Mg at the growth region and the subsequent phase stability of $MgB_2$ at the deposition temperature, inverted funnel-like guide made of Mg-foil was employed while one side of the guide were open for the sputtered B flux. Mg vapor pressure should be controlled precisely to secure the complete reaction. The $MgB_2$/carbon fiber showed a uniformly deposited thin layer with dense and well-formed grains. The $MgB_2$/carbon fibers in this study showed $T_c$~37.5K, $J_c$ ~ $2{\times}10^4\;A/cm^2$ in the 20K, 0T.

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF

광원 적용을 위한 신재생에너지 카본 박막의 전기적 특성 (Electrical Properties of Renewable Energy Carbon Film for Light Source Technology)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권12호
    • /
    • pp.558-560
    • /
    • 2005
  • The carbon film was deposited by the electrolysis of methanol solution. Carbon films have been grown on silicon substrates using the method of chemical process. From investigations of the Raman spectroscopy and the FTIR spectroscopy, the carbon film deposited by the electrolysis was identified the hydrogenated carbon film with the porous structure. The carbon film deposited by elctrolysis of methanol was identified as the hydrogenated carbon film with porous structure. Deposition parameters for the growth of the carbon films were current density, methanol liquid temperature. We electrical resistance and surface morphology of carbon films formed various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes is relatively wider. We found that the electrical resistance in the films independent of both current density and methanol liquid temperature. The temperature dependence of the electrical resistance in the low resistance carbon films is different from one obtained in graphite..

다구찌 실험계획법을 이용한 탄소코팅 초박막의 마찰특성 (Friction Properties of Carbon Coated Ultra-thin Film using Taguchi Experimental Design)

  • 안준양;김대은;최진용;신경호
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.143-150
    • /
    • 2003
  • Frictional properties of ultra-thin carbon coatings on silicon wafer were investigated based on Taguchi experimental design method. Sensitivity analysis was performed with normal load, relative humidity, deposition process, and coating thickness as the variables. It was found that despite low thickness, the carbon coating resulted in relatively low friction coefficient. Also, the frictional behavior was affected significantly by humidity and normal load.

레이저 국소증착에 의한 탄소 미세 구조물 제조 및 분광분석 (Fabrication of micro carbon structures using laser-induced chemical vapor deposition and Raman spectroscopic analysis)

  • 한성일;김진범;;정성호
    • 한국레이저가공학회지
    • /
    • 제5권2호
    • /
    • pp.17-22
    • /
    • 2002
  • Characteristics of micro carbon structures fabricated with laser-induced chemical vapor deposition (LCVD) are investigated. An argon ion laser (λ=514.5nm) and ethylene gas were utilized as the energy source and precursor, respectively. The laser beam was focused onto a graphite substrate to produce carbon deposit through thermal decomposition of the precursor. Average growth rate of a carbon rod increased for increasing laser power and pressure. Micro carbon rods with good surface quality were obtained at near the threshold condition. Micro carbon rods with aspect ratio of about 100 and micro tubular structures were fabricated to demonstrate the possible application of this method to the fabrication of three-dimensional microstructures. Laser Raman spectroscopic analysis of the micro carbon structures revealed that the carbon rods are consisting of amorphous carbon.

  • PDF

Electrokinetic deposition of individual carbon nanotube onto an electrode gap

  • Han Chang-Soo;Seo Hee-Won;Lee Hyung-Woo;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.42-46
    • /
    • 2006
  • This paper presents a method for deposition an individual carbon nanotube (CNT). The alignment of a single CNT is very useful to perform studies related to applications in FET (Field Emitted Transistor), SET (Single Electron Transistor) and to make chemical sensor as well as bio sensors. In this study, we developed the deposition method of a CNT individualized in a solution. Using the electrokinetic method, we found the optimum conditions to assemble the nanotube and discussed about plausible explanation for the assembling mechanism. These results will be available to use for making the CNT sensor device.

탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성 (Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process)

  • 강기철;;이창희
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.