Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.3.151

Overlook of current chemical vapor deposition-grown large single-crystal graphene domains  

Park, Kyung Tae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Kim, Taehoon (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Park, Chong Rae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Publication Information
Carbon letters / v.15, no.3, 2014 , pp. 151-161 More about this Journal
Abstract
Exceptional progress has been made with chemical vapor deposition (CVD) of graphene in the past few years. Not only has good monolayer growth of graphene been achieved, but large-area synthesis of graphene sheets has been successful too. However, the polycrystalline nature of CVD graphene is hampering further progress as graphene property degrades due to presence of grain boundaries. This review will cover factors that affect nucleation of graphene and how other scientists sought to obtain large graphene domains. In addition, the limitation of the current research trend will be touched upon as well.
Keywords
chemical vapor deposition; graphene; single-crystal; seeded growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 342, 720 (2013). http://dx.doi.org/10.1126/science.1243879.   DOI   ScienceOn
2 Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P. Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C, 117, 18919 (2013). http://dx.doi.org/10.1021/jp4047648.   DOI   ScienceOn
3 Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Acc Chem Res, 46, 23 (2012). http://dx.doi.org/10.1021/ar3001266.   DOI   ScienceOn
4 Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang WJ. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc, 134, 3627 (2012). http://dx.doi.org/10.1021/ja2105976.   DOI   ScienceOn
5 Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano, 7, 1351 (2013). http://dx.doi.org/10.1021/nn3049297.   DOI   ScienceOn
6 Chatain D, Wynblatt P, Rohrer GS. Anisotropic phenomena at interfaces in bismuth-saturated copper. Scripta Mater, 50, 565 (2004). http://dx.doi.org/10.1016/j.scriptamat.2003.11.058.   DOI   ScienceOn
7 Wofford JM, Nie S, McCarty KF, Bartelt NC, Dubon OD. Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett, 10, 4890 (2010). http://dx.doi.org/10.1021/nl102788f.   DOI   ScienceOn
8 Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of highquality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 49, 4122 (2011). http://dx.doi.org/10.1016/j.carbon.2011.05.047.   DOI   ScienceOn
9 Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi JY, Pribat D, Lee YH. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett, 11, 4144 (2011). http://dx.doi.org/10.1021/nl201980p.   DOI   ScienceOn
10 Zhang B, Lee WH, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff RS. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano, 6, 2471 (2012). http://dx.doi.org/10.1021/nn204827h.   DOI   ScienceOn
11 Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater, 23, 1441 (2011). http://dx.doi.org/10.1021/cm1028854.   DOI   ScienceOn
12 Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 6, 3614 (2012). http://dx.doi.org/10.1021/nn3008965.   DOI   ScienceOn
13 Robertson AW, Warner JH. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett, 11, 1182 (2011). http://dx.doi.org/10.1021/nl104142k.   DOI   ScienceOn
14 Ambrosi A, Bonanni A, Sofer Z, Pumera M. Large-scale quantification of CVD graphene surface coverage. Nanoscale, 5, 2379 (2013). http://dx.doi.org/10.1039/C3NR33824J.   DOI   ScienceOn
15 Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e.   DOI   ScienceOn
16 Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C. Comparison of graphene growth on singlecrystalline and polycrystalline ni by chemical vapor deposition. J Phys Chem Lett, 1, 3101 (2010). http://dx.doi.org/10.1021/jz1011466.   DOI   ScienceOn
17 Coraux J, N'Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett, 8, 565 (2008). http://dx.doi.org/10.1021/nl0728874.   DOI   ScienceOn
18 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.   DOI   ScienceOn
19 Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.   DOI   ScienceOn
20 Iwasaki T, Park HJ, Konuma M, Lee DS, Smet JH, Starke U. Longrange ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett, 11, 79 (2010). http://dx.doi.org/10.1021/nl102834q.   DOI   ScienceOn
21 Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao HJ. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv Mater, 21, 2777 (2009). http://dx.doi.org/10.1002/adma.200800761.   DOI   ScienceOn
22 Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.   DOI   ScienceOn
23 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.   DOI
24 Choi YY, Kang SJ, Kim HK, Choi WM, Na SI. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energy Mater Sol Cells, 96, 281 (2012). http://dx.doi.org/10.1016/j.solmat.2011.09.031.   DOI   ScienceOn
25 Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv Funct Mater, 23, 198 (2013). http://dx.doi.org/10.1002/adfm.201201577.   DOI   ScienceOn
26 Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater, 23, 4898 (2011). http://dx.doi.org/10.1002/adma.201102456.   DOI   ScienceOn
27 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
28 Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck OE, Duscher G, Dunlap JR, Xiao K, Gu G. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano, 7, 8924 (2013). http://dx.doi.org/10.1021/nn4034019.   DOI   ScienceOn
29 Kim DW, Lee J, Kim SJ, Jeon S, Jung HT. The effects of the crystalline orientation of Cu domains on the formation of nanoripple arrays in CVD-grown graphene on Cu. J Mater Chem C, 1, 7819 (2013). http://dx.doi.org/10.1039/C3TC31717J.   DOI
30 Wu YA, Fan Y, Speller S, Creeth GL, Sadowski JT, He K, Robertson AW, Allen CS, Warner JH. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6, 5010 (2012). http://dx.doi.org/10.1021/nn3016629.   DOI   ScienceOn
31 Gan L, Luo Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano, 7, 9480 (2013). http://dx.doi.org/10.1021/nn404393b.   DOI   ScienceOn
32 Yamukyan MH, Manukyan KV, Kharatyan SL. Copper oxide reduction by hydrogen under the self-propagation reaction mode. J Alloys Compd, 473, 546 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.06.031.   DOI   ScienceOn
33 Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, Weiller BH, Gimzewski JK. Continuity of graphene on polycrystalline copper. Nano Lett, 11, 251 (2010). http://dx.doi.org/10.1021/nl1036403.   DOI   ScienceOn
34 Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett, 11, 4547 (2011). http://dx.doi.org/10.1021/nl201566c.   DOI   ScienceOn
35 Zhang W, Wu P, Li Z, Yang J. First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C, 115, 17782 (2011). http://dx.doi.org/10.1021/jp2006827.   DOI   ScienceOn
36 Hansen L, Stoltze P, Jacobsen KW, Nørskov JK. Self-diffusion on copper surfaces. Phys Rev B, 44, 6523 (1991). http://dx.doi.org/10.1103/PhysRevB.44.6523.   DOI
37 Kalbac M, Frank O, Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 50, 3682 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.041.   DOI   ScienceOn
38 Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5, 6069 (2011). http://dx.doi.org/10.1021/nn201978y.   DOI   ScienceOn
39 Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys, 13, 20836 (2011). http://dx.doi.org/10.1039/C1CP22347J.   DOI   ScienceOn
40 Zhang Y, Li Z, Kim P, Zhang L, Zhou C. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano, 6, 126 (2011). http://dx.doi.org/10.1021/nn202996r.
41 Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys, 47, 399 (1984). http://dx.doi.org/10.1088/0034-4885/47/4/002.   DOI   ScienceOn
42 Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano, 6, 9110 (2012). http://dx.doi.org/10.1021/nn303352k.   DOI   ScienceOn
43 Wu Y, Hao Y, Jeong HY, Lee Z, Chen S, Jiang W, Wu Q, Piner RD, Kang J, Ruoff RS. Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater, 25, 6744 (2013). http://dx.doi.org/10.1002/adma.201302208.   DOI   ScienceOn
44 Bartelt NC, McCarty KF. Graphene growth on metal surfaces. MRS Bull, 37, 1158 (2012). http://dx.doi.org/10.1557/mrs.2012.237.   DOI
45 Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B. High quality graphene synthesized by atmospheric pressure CVD on copper foil. Surf Coat Technol, 230, 87 (2013). http://dx.doi.org/10.1016/j.surfcoat.2013.06.050.   DOI   ScienceOn
46 Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on $SiO_2$. Nat Nano, 3, 206 (2008). http://dx.doi.org/10.1038/nnano.2008.58.   DOI   ScienceOn
47 Zhou H, Yu WJ, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat Commun, 4, 2096 (2013). http://dx.doi.org/10.1038/ncomms3096.   DOI   ScienceOn
48 Sutter P, Sadowski JT, Sutter E. Graphene on Pt(111): growth and substrate interaction. Phys Rev B, 80, 245411 (2009). http://dx.doi.org/10.1103/PhysRevB.80.245411.   DOI   ScienceOn
49 Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 10, 443 (2011). http://dx.doi.org/10.1038/nmat3010.   DOI   ScienceOn
50 Choi WJ, Chung YJ, Park S, Yang CS, Lee YK, An KS, Lee YS, Lee JO. A simple method for cleaning graphene surfaces with an electrostatic force. Adv Mater, 26, 637 (2014). http://dx.doi.org/10.1002/adma.201303199.   DOI   ScienceOn
51 Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 102, 023112 (2013). http://dx.doi.org/10.1063/1.4776707.   DOI   ScienceOn
52 Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 8, 950 (2013). http://dx.doi.org/10.1021/nn405754d.   DOI   ScienceOn
53 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.   DOI   ScienceOn
54 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
55 Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2007). http://dx.doi.org/10.1021/nl072838r.   DOI   ScienceOn
56 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI   ScienceOn
57 Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. Graphene and mobile ions: the key to all-plastic, solutionprocessed light-emitting devices. ACS Nano, 4, 637 (2010). http://dx.doi.org/10.1021/nn9018569.   DOI   ScienceOn
58 Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene fieldeffect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/LED.2007.891668.   DOI   ScienceOn
59 Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027 (2010). http://dx.doi.org/10.1002/elan.200900571.   DOI   ScienceOn
60 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI   ScienceOn
61 Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, March-enkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphenebased nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f.   DOI   ScienceOn
62 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). http://dx.doi.org/10.1021/nl801827v.   DOI   ScienceOn
63 Karabacak T, DeLuca JS, Wang PI, Eyck GAT, Ye D, Wang GC, Lu TM. Low temperature melting of copper nanorod arrays. J Appl Phys, 99, 064304 (2006). http://dx.doi.org/10.1063/1.2180437.   DOI   ScienceOn
64 Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. Fractal etching of graphene. J Am Chem Soc, 135, 6431 (2013). http://dx.doi.org/10.1021/ja402224h.   DOI   ScienceOn
65 Kidambi PR, Ducati C, Dlubak B, Gardiner D, Weatherup RS, Martin MB, Seneor P, Coles H, Hofmann S. The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J Phys Chem C, 116, 22492 (2012). http://dx.doi.org/10.1021/jp303597m.   DOI   ScienceOn