• Title/Summary/Keyword: carbon/Epoxy composite

Search Result 620, Processing Time 0.024 seconds

A Study on the Fabrication of the Composite Sabot for a Kinetic Energy Projectile (운동에너지탄용 복합재 이탈피의 제조에 관한 연구)

  • Choi, Jae-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.88-94
    • /
    • 2006
  • In order to substitute current aluminum sabot and to increase the penetration performance of the kinetic energy projectiles, the research and development program for composites sabot has been conducted. For carbon/epoxy composites sabot, unidirectional carbon fiber reinforced epoxy prepreg was chosen and thick sectioned composites preforms with the different fiber angles along the circumferential direction of sabot were prepared by compression molding under the careful processing conditions at $150^{\circ}C$ for 1hour with $70kgf/cm^2$ curing pressure. The composites sabot demonstrated a weight reduction by approximately 30% than that of current aluminum sabot. The muzzle velocity of a kinetic energy projectile with composites sabot was measured to be about 63m/s higher than that with aluminum sabot. These results imply that the penetration performance is expected to be considerably increased when the composite sabot is applied to the kinetic energy projectiles.

High velocity Impact Analysis of Carbon/Epoxy Composite Laminates (탄소/에폭시 복합재 적층판의 고속충돌 관통해석)

  • Kim, Young-Ah;Woo, Kyeongsik;Yoo, Won-Young;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper, the penetration behavior of carbon/epoxy composite laminates subjected to high velocity projectile impact was studied by numerical simulation. The composite laminates made of carbon/epoxy with $[45/0/-45/90]_{ns}$ stacking sequence and the spherical steel impactor were three-dimensionally modeled. The ply numbers of 16 and 24 and the impact velocities in the range of 140-250 m/s were considered. The analysis was performed using an explicit finite element code LS-DYNA. The residual velocity and the amount of damage were predicted and compared to the experimental results.

A Study on Mechanical Properties of Carbon Nanofiber/Epoxy Composites with Dispersion Methods (분산 방법에 따른 탄소나노섬유/에폭시 복합재료의 기계적 물성에 관한 연구)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.151-154
    • /
    • 2004
  • Despite of the excellent properties of carbon nanofiber, The properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, For improvement properties of carbon nanofiber filled epoxy composites, the effect of dispersion was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by optical microscope and scanning electron microscope (SEM). UV adsorption and turbidity measured by UV spectrometer was used for the comparison of dispersion of carbon nanofiber.

  • PDF

Nondestructive Sensing Evaluation of Electrospun PVDF Fiber and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Electrospun PVDF Fiber 및 CNT 강화 Epoxy 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • Nondestructive sensing of electrospun PYDF web and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical technique. Electrospinning is a technique used to produce micron to submicron diameter polymeric fibers. Electrospun PVDF web was also evaluated for the sensing properties by micromechanical test and by measurement electrical resistance. CNT composite was especially prepared for high volume contents, 50 vol% of reinforcement. Electrical contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Work of adhesion using contact angle measurement was studied to correlate acid-base surface energy between carbon fiber and CNF composites, and will study furher for interfacial adhesion force by micromechanical test.

  • PDF

Evaluation of the Property of adiabatic Insulation for TTX Train with Sandwich Composite bodyshell (샌드위치 복합소재가 적용된 틸팅 차량의 단열 특성 평가 연구)

  • Lee Sang-Jin;Oh Kyung-Won;Jeong Jong-Cheol;Cho Se-Hyun;Seo Soung-il
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.251-256
    • /
    • 2005
  • This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.

  • PDF

A novel hemispherical microbond specimen for evaluating the interfacial shear strength of single fiber composite (복합재료의 계면 전단강도를 평가하기 위한 새로운 반구형 미소접합 시험편)

  • Park, Joo-Eon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.25-30
    • /
    • 2008
  • A hemispherical microbond specimen adhered onto single carbon fiber has been proposed for evaluating the interfacial shear strength between epoxy and carbon fiber. Hemispherical microbond specimens showed low interfacial shear strength data and its small standard deviation as compared with the droplet one, which seemed to be caused by the reduction of the meniscus effects and of the stress concentration in the region contacting with the tip of pin hole. In comparison with the droplet specimen the hemispherical specimen showed the shear stress distribution similar to the cylindrical one in that low stress concentration arose around the contacting region. Average interfacial shear strength obtained by the hemispherical ones represented a good correlation with the hardness of the epoxy matrix.

Mechanical Properties of Vapor Grown Carbon Fiber/Epoxy Nanocomposites With Different Dispersion Methods

  • Khuyen, Nguyen Quang;Kim, Byung-Sun;Kim, Jin-Bong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.264-271
    • /
    • 2007
  • Effect of dispersion methods for Vapor Grown Carbon Fibers (VGCF) in epoxy caused the change in mechanical properties of VGCF/epoxy nanocomposites, such as tensile modulus and tensile strength. The influence of VGCF types - atmospheric plasma treated (APT) VGCF and raw VGCF - and their contents was discussed in detail. Treating VGCF with atmospheric plasma enhanced the surface energy, therefore improved the bonding strength with epoxy matrix. Two different methods used to disperse VGCF were ultrasonic and mechanical homogenizer methods. When using dispersion solutions, the VGCF demonstrated good dispersion in ethanol in both homogenizer and ultrasonic method. The uniform dispersion of VGCF was investigated by scanning electron microscopy (SEM) which showed well-dispersion of VGCF in epoxy matrix. The tensile modulus of raw VGCF/epoxy nanocomposites obtained by ultrasonic method was higher than that of one obtained by homogenizer method. APT VGCF/epoxy nanocomposites showed higher tensile strength than that of raw VGCF/epoxy nanocomposites.

Interfacial Properties and Microfailure Mechanisms of Electrodeposited Carbon Fiber/epoxy-PEI Composites by Microdroplet and Surface Wettability Tests (Microdroplet 시험법과 Surface Wettability 측정을 이용한 전기증착된 탄소섬유 강화 Epoxy-PEI 복합재료의 계면물성과 미세파괴 메카니즘)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.153-157
    • /
    • 2001
  • Interfacial properties and microfailure modes of electrodeposition (ED) treated carbon fiber reinforced polyetherimide (PEI) toughened epoxy composite were investigated using microdroplet test and the measurement of surface wettability. As PEI content increased, Interfacial shear strength (IFSS) increased due to enhanced toughness and plastic deformation of PEI. In the untreated case, IFSS increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, for ED-treated case IFSS increased with PEI content with rather low improvement rate. The work of adhesion between fiber and matrix was not directly proportional to IFSS for both the untreated and ED-treated cases. The matrix toughness might contribute to IFSS more likely than the surface wettability. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

  • PDF

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면분석법을 이용한 FRP Leaf Spring의 최적설계)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • The present paper is concerned with the optimum design of taper spring, in which the static spring rate of the fiber-reinforcement composite material spring is fitted to that of the steel leaf spring. The thickness and width of springs were selected as design variables. The object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-glass/epoxy and carbon/epoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. The result of the static spring rates show that optimized composite leaf springs agree with steel leaf spring within 1%.

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.