• Title/Summary/Keyword: carbide phase

Search Result 262, Processing Time 0.022 seconds

Effect of Additive Composition on Mechanical Properties of Silicon Carbide Sintered with Aluminum Nitride and Erbium Oxide

  • Lee, Sung-Hee;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • The effect of additive composition, using AlN and $Er_{2}O_{3}$ as sintering additives, on the mechanical properties of liquid-phase-sintered, and subsequently annealed SiC ceramics was investigated. The microstructures developed were quantitatively analyzed by image analysis. The average thickness of SiC grains increased with increasing the $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio in the additives whereas the aspect ratio decreased with increasing the ratio. The mechanical properties versus $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio curve had a maximum; i.e., there was a small composition range at which optimum mechanical properties were realized. The best results were obtained when the ratio ranged from 0.4 to 0.6. The flexural strength and fracture toughness of the SiC ceramics were $550\~650\;MPa$ and $5.5\~6.5$ MPa${\cdot}m^{1/2}$, respectively.

Texture in hot-pressed silicon carbide (고온가압소결한 탄화규소의 집합조직)

  • 김영욱;김원중
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.343-350
    • /
    • 1995
  • A Abstract Systematic studies of the effects of crystalline forms of starting powders and p processing variables on the texture of hot - pressed silicon carbide are described. The results I indicate that hot - pressing of $\beta$ - SiC can produce strong textures and composite type duplex microstructure due to the ${\beta} {\rightarrow} {\alpha}$ phase transformation of SiC. The texture variations d during post - annealing have been observed. In the case of using a - SiC as starting pow¬d ders, the degree of preferred orientation by hot - pressing is relatively weak.

  • PDF

A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan (Capstan용 용사코팅의 내마모 특성 향상 방안)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF

Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성)

  • Kim, Jong-Chan;Lee, Eun Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

Characteristics of Diamond Films Deposited on Cemented Tungsten Carbide Substrate (초경합금기판 위에 성장되는 다이아몬드 막의 특성)

  • 김봉준;박상현;박재윤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.387-394
    • /
    • 2004
  • Diamond films were deposited on the cemented tungsten carbide WC-Co cutting insert substrates by using both microwave plasma chemical vapor deposition(MWPCVD) and radio frequency plasma chemical vapor deposition (RFPCVD) from $CH_4$$-H_2$$-O_2$ gas mixture. Scanning electron microscopy and X-ray diffraction techniques were used to investigate the microstructure and phase analysis of the materials and Raman spectrometry was used to characterize the quality of the diamond coating. Diamond films deposited using MWPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show a dense, uniform, well faceted and polycrystalline morphology. The compressive stress in the diamond film was estimated to be (1.0∼3.6)$\pm$0.9 GPa. Diamond films which were deposited on the WC-Co cutting insert substrates by RFPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show relatively good adhesion, very uniform, dense and polycrystalline morphology.

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer (진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구)

  • Cho, Jin-Hyeon;Jin, Young-Min;Ahn, Jee-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Chipped Titanium Scraps as Raw Materials for Cutting Tools (타이타늄 밀링/터닝 스크랩의 절삭공구 소재화)

  • Kwon, Hanjung;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Scraps are a byproduct of the machining process used for transforming titanium ingots into useful mechanical parts. Scraps take two forms, namely, bulky scraps, which are produced by cutting, and chipped scraps, which are produced by milling. Bulky scraps are comparatively easier to recycle because of their small surface area and less oxygen content; as a result, they pose only a small risk of explosion. In contrast, chipped scraps pose a higher risk of explosion, because of which, their recycling is complicated, resulting in most such scraps being discarded. With the aim of avoiding this waste, we proposed a novel process for converting chipped scraps into stable carbide materials. Methods typically applied to reduce particle size and impair the formation of solid solution type phase in the carbide materials were used to improve the mechanical properties of carbides prepared from chipped scraps. Our novel recycling process reduced carbide production costs and improved carbide quality.