• Title/Summary/Keyword: capacitive sensor

Search Result 329, Processing Time 0.033 seconds

High Performance Circuit Design of a Capacitive Type Fingerprint Sensor Signal Processing (고성능 용량 형 지문센서 신호처리 회로 설계)

  • 정승민;이문기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.109-114
    • /
    • 2004
  • This paper proposes an advanced circuit for the fingerprint sensor signal processing. We increased the voltage between ridge and valley by modifying the parasitic capacitance eliminating circuit of sensor plate. The analog comparator was designed for comparing the sensor signal voltage with the reference signal voltage. We also propose an effective isolation strategy for removing noise and signal coupling of each sensor pixel. The fingerprint sensor circuit was designed and simulated, and the layout was performed.

Development of Plastic Film Type Water Level Sensor for High Temperature (고온용 플라스틱 필름 수위 센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.

Carbon Black Containing Micro-Grid Patterned Piezocapacitive Pressure Sensor (탄소분말이 함유된 마이크로 그리드패턴 전기용량형 압력센서)

  • Ma, Sung-Young;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.237-242
    • /
    • 2019
  • In this research, a capacitive pressure sensor (Piezocapacitive Sensor) was fabricated using carbon black powder containing poly-dimethylsiloxane (PDMS) with micro-grid patterned surface. To investigate the effect of carbon black powder and micro-grid pattern on the sensor's performance, various sensors were fabricated with different carbon black powder concentration and grid pattern density. The performances of the developed sensors were compared in terms of operating range and sensitivity.

Implementation of 24-Channel Capacitive Touch Sensing ASIC (24 채널 정전 용량형 터치 검출 ASIC의 구현)

  • Lee, Kyoung-Jae;Han, Pyo-Young;Lee, Hyun-Seok;Bae, Jin-Woong;Kim, Eung-Soo;Nam, Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a 24 channel capacitive touch sensing ASIC. This ASIC consists of analog circuit part and digital circuit part. Analog circuits convert user screen touch into electrical signal and digital circuits represent this signal change as digital data. Digital circuit also has an I2C interface for operation parameter reconfiguration from host machine. This interface guarantees the stable operation of the ASIC even against wide operation condition change. This chip is implemented with 0.18 um CMOS process. Its area is about 3 $mm^2$ and power consumption is 5.3mW. A number of EDA tools from Cadence and Synopsys are used for chip design.

Low Power 31.6 pJ/step Successive Approximation Direct Capacitance-to-Digital Converter (저전력 31.6 pJ/step 축차 근사형 용량-디지털 직접 변환 IC)

  • Ko, Youngwoon;Kim, Hyungsup;Moon, Youngjin;Lee, Byuncheol;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • In this paper, an energy-efficient 11.49-bit successive approximation register (SAR) capacitance-to-digital converter (CDC) for capacitive sensors with a figure of merit (FoM) of 31.6 pJ/conversion-step is presented. The CDC employs a SAR algorithm to obtain low power consumption and a simplified structure. The proposed circuit uses a capacitive sensing amplifier (CSA) and a dynamic latch comparator to achieve parasitic capacitance-insensitive operation. The CSA adopts a correlated double sampling (CDS) technique to reduce flicker (1/f) noise to achieve low-noise characteristics. The SAR algorithm is implemented in dual operating mode, using an 8-bit coarse programmable capacitor array in the capacitance-domain and an 8-bit R-2R digital-to-analog converter (DAC) in the charge-domain. The proposed CDC achieves a wide input capacitance range of 29.4 pF and a high resolution of 0.449 fF. The CDC is fabricated in a $0.18-{\mu}m$ 1P6M complementary metal-oxide-semiconductor (CMOS) process with an active area of 0.55 mm2. The total power consumption of the CDC is $86.4{\mu}W$ with a 1.8-V supply. The SAR CDC achieves a measured 11.49-bit resolution within a conversion time of 1.025 ms and an energy-efficiency FoM of 31.6 pJ/step.

Wireless Gap Sensor Based on Surface Acoustic Wave Device (표면 탄성파 장치에 기반한 무선 간극 센서)

  • Kim, Jae-Geun;Park, Kyoung-Soo;Park, No-Cheol;Park, Young-Pil;Lee, Taek-Joo;Lim, Soo-Cheol;Ohm, Won-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, we report a high-precision wireless gap sensor based on a surface acoustic wave (SAW) device. The sensing element is a parallel-plate capacitor whose dimensions are $3{\times}3\;mm^2$, and is attached to the SAW device as an external load. The SAW device, equipped with an RF antenna, serves simultaneously as a signal conditioner and an RF transponder. The center frequency of the SAW device is 450 MHz. The wireless gap sensor prototype exhibits a resolution of 100 nm and a sensing range of $50{\mu}m$. The proposed sensor system can be used for remote, high-precision gap measurement in hard-to-reach environments.

Development of Diaphragm-type Stylus Probe for Ultra-precision On-machine Measurement Application (초정밀 기상측정용 다이아프램 타입 접촉식 프로브의 개발)

  • Lee, Jung-Hoon;Lee, Chan-Hee;Choi, Joon-Myeong;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.845-852
    • /
    • 2012
  • The diaphragm-type stylus probe was developed for ultra-precision on-machine measurement (OMM) application. This probe is equipped with two diaphragms which are parallel and one capacitive sensor is used for detecting the vertical motion of end tip in the stylus when it is contacted to the optical freeform surface. For better performance of proposed probes, several design parameters such as axial stiffness and the lateral deformations were investigated with finite element analysis techniques. To verify the feasibility, the profiles of the master sphere ball were measured on the ultra-precision milling machine. The measurement results show that the proposed probe can calculate the radius of the circle within the accuracy of 0.1 ${\mu}m$ for the ultraprecision optical surface.