• Title/Summary/Keyword: capacitive deionization

Search Result 66, Processing Time 0.029 seconds

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part II : Performance Study of Membrane Capacitive Deionization Process (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식 탈염공정의 탈염성능 Part II : 불균질 이온교환막의 탈염성능)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.240-247
    • /
    • 2017
  • In this study, the heterogeneous ion exchange membranes prepared by the combination of the carbon electrode and mixed the cation and anion exchange polymers and polyvinylidene fluoride as the basic polymer together were made to recognize the efficiency of the salt removal for the application of the membrane capacitive deionization process. The mixing weight ratio of the solvent, basic polymer and ion exchange resin was 7 : 2 : 1 and this mixed solution was directly cast on the electrode. As for the operating conditions of the adsorption voltage and time, feed flow rate, desorption voltage and time of the feed solution NaCl 100 mg/L, the salt removal efficiencies (SRE) were measured. Apart from this NaCl, the $CaCl_2$ and $MgSO_4$ solutions were investigated in terms of SRE as well. Typically, SRE for NaCl 100 mg/L solution under the conditions of adsorption voltage/time, 1.5 V/3 min, desorption voltage/time -0.1 V/3 min, was shown 98%. And for the $CaCl_2$ and $MgSO_4$ solutions, the SREs of 70 and 59% were measured under the conditions of adsorption voltage/time, 1.2 V/3 min, desorption voltage/time -0.5 V/5 min, respectively.

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process (인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과)

  • Seong, Du-Ri;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.466-473
    • /
    • 2020
  • Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.

Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization (축전식 이온제거에 대한 $TiO_2$/Activated Carbon 화합물의 전기흡착 거동)

  • Lee, Jeong-Won;Kim, Hong-Il;Kim, Han-Joo;Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.265-271
    • /
    • 2010
  • Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.

Porous Carbon Aerogel-Silica Gel Composite Electrodes for Capacitive Deionization Process (전기용량적 탈이온 공정을 위한 다공성 탄소에어로젤-실리카젤 복합전극)

  • Yang Chun-Mo;Choi Woon-Hyuk;Cho Byung Won;Han Hak-Soo;Yun Kyung Suk;Cho Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • Porous carbon aerogel-silica gel composite materials were used as the electrodes of capacitive deionization(CDI) process, which were prepared by a paste rolling method. The electrochemical parameters such at current values, coulombs af a function of cycle, and CDI efficiencies were investigated for 10th and 100th cycles in 1,000ppm NaCl solution. Carbon aerogel-silica gel composite electrodes showed good wet-ability and higher mechanical strengths even under the NaCl solutions as well. In our experimented runs, all of the composite electrodes also are showed good cycle-ability without destroy of active material during cycles and decreased manufacturing times by $50\%$. Conclusively, the adding of silica gel powder to carbon aerogel leads to the effective performance of CDI process due to effective utilization of active materials by increasing the wet-ability and mechanical hardness.

Electrochemical Properties of Porous Carbon Electrode as a Function of Internal Electrolyte Concentration (전극 내부의 전해질 농도 변화에 따른 다공성 탄소전극의 전기화학적 특성)

  • Park, Byeong-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.700-704
    • /
    • 2009
  • The electrochemical properties of porous carbon electrodes as a function of their internal electrolyte concentration were investigated. Cyclic voltammetry, chronoamperometry, and impedance spectroscopic analysis were conducted for carbon electrodes equilibrated with 0.01, 0.05, 0.1, and 0.5 M KCl solution and covered with a cation-exchange membrane. The specific capacitance of the electrodes increased as the internal electrolyte concentration increased, due to a decrease in charging resistance. Experimental results indicated that the salt removal efficiency of the membrane capacitive deionization process could be enhanced by increasing the internal electrolyte concentration, even for an influent with a low salt concentration.

The Capacitive Deionization Module Design and Its Analysis by Computational Flow Dynamics (CDI 모듈 설계와 전산유동해석)

  • Nam, Ki Jin;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.284-291
    • /
    • 2019
  • In this study, for the improvement of flow pattern with the CDI module that had the larger electrodes, it was designed with the rectangular type which is gradually wider from the inlet. Based on this, both the flow pattern of feed solution and dead zone were observed and the internal pressure, streaming line and velocity vector distribution were analyzed through the computational flow dynamics and compared with the experimental results. For all flow rates of 10, 20, 30 mL/min, there were no dead zones and the flow patterns were maintained constant. Therefore, it may be possible that the larger electrodes are applied to the CDI process.

Improvement of The Desalination Performance through The Split Electrodes in The Capacitive Deionization Process (축전식 탈염 공정에서의 분할 전극을 통한 탈염 성능 향상)

  • Kim, Yong Bin;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.292-298
    • /
    • 2019
  • The purpose of this study was to improve the desalination performance by using split electrodes in the capacitive desalination process. The experiment was carried out by measuring the desalination efficiency of the NaCl aqueous solution according to the partitioning of the electrode at 20 mL/min flow rate, 1.2 V, 3 min adsorption conditions, and -1 V, 1 min desorption conditions. The desalination efficiency for the non-divided electrodes with a surface area of $146cm^2$ reached 40% while the divided electrode with a surface area of $133cm^2$ showed a desalination efficiency of 57%. The desalination efficiency of the same split electrode was 49% at 2 cm divided interval and 57% at 1cm divided interval. The desalination efficiency of the split electrode was higher than that of the normal CDI and narrower divided intervals increased the performance.

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

A Study on the Cell Structure for Capacitive Deionization System (축전식 탈염 시스템을 위한 셀 구조에 관한 연구)

  • Lee, Ju-Young;Seo, Seok-Jun;Park, Jung-Woo;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.791-794
    • /
    • 2010
  • This study presents channel design of a CDI stack to achieve high removal efficiency in a large scale by applying parallel flow structure with a concentrated stream. The flow pattern in the stack was simulated by COMSOL Multiphysics program. To prove the salt removal performance, a unit cell and 20 cell stacks were tested at a flow rate condition of 18 ml/min and 360 ml/min, respectively. The removal efficiencies of the unit cell and the 20 cell stacks were obtained as 70.8 % and 75.6 %, respectively, with 100 mg/L sodium chloride solution. During the operation of cell test, water pressures of unit cell and 20 cell pair stack maintained in the ranges of 1.1 psi and 1.3~1.5 psi, respectively. It was demonstrated that the parallel cell structure with two concentrated streams can be employed in a large scale CDI for salt removal.