Browse > Article

Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization  

Lee, Jeong-Won (Department of Industrial Engineering Chemistry, Chungbuk National University)
Kim, Hong-Il (Department of Industrial Engineering Chemistry, Chungbuk National University)
Kim, Han-Joo (Department of Industrial Engineering Chemistry, Chungbuk National University)
Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 265-271 More about this Journal
Abstract
Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.
Keywords
capacitive deionization; desalination; activated carbon; $TiO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. Hori, M. Hashino, A. Omori, T. Matsuda, K. Takasa, and K. Watanabe, J. Membr, Sci., 132, 203 (1997).   DOI   ScienceOn
2 T. Takahagi and A. Ishitani, Carbon, 22, 43 (1984).   DOI   ScienceOn
3 C. H. Hou, C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris, J. of Colloid and Interface Science, 302, 54 (2006).   DOI   ScienceOn
4 J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006).   DOI   ScienceOn
5 I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).   DOI
6 K. S. Spiegler and Y. M. El-Sayed, Desalination, 134, 109 (2001).   DOI   ScienceOn
7 Q. Shen, S. K. You, S. G. Park, H. Jiang, D. Guo, B. Chen, and X. Wang, Electroanalysis, 20, 2526 (2008).   DOI   ScienceOn
8 J. Xie, X. B. Zhao, G. S. Cao, and M. J. Zhao, Electrochem. Acta, 50, 2725 (2004).
9 M. Mullier and B. Kastening, J. Electroanal. Chem., 374, 149 (1994).   DOI   ScienceOn
10 H. Shi, Electrochimica Acta, 39, 2083 (1994).   DOI   ScienceOn
11 A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons Inc., 522, New York (1980).
12 J. G. Yu, X. J. Zhao, and Q. N. Zhou, Thin Solid Films, 379, 7 (2000).   DOI   ScienceOn
13 Augustynski, J. Electrochem. Acta, 38, 43 (1993).   DOI   ScienceOn
14 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI   ScienceOn
15 Y. M. Kim, J. of the Korean Society of Analyrical Sciences, (1992).
16 C. Wagner and G. Muilenbergy (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota (1979).
17 F. M. Liu and T. M. Wang, Appl. Surf. Sci., 195, 284 (2002).   DOI   ScienceOn
18 S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, Carbon, 35, 1799 (1997).   DOI   ScienceOn
19 X. H. Xia, Z. J. Jia, Y. Yu, Y. Liang, Z. Wang, and L. L. Ma, Carbon, 45, 717 (2007).   DOI   ScienceOn
20 M. C. Paiva, C. A. Bernardo, and M. Nardin, Carbon, 38, 1323 (2000).   DOI   ScienceOn
21 M. W. Ryoo and G. Seo, Water Res., 37, 1527 (2003).   DOI   ScienceOn
22 H. Wang, Y. Wu, and B. Q. Xu, Applied catalysis B : Environmental, 59, 139 (2005).   DOI   ScienceOn
23 Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm, and A. M. Stephan, Journal of Alloys and Compounds, 448, 141 (2008).   DOI   ScienceOn
24 T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005).   DOI   ScienceOn
25 X. Z. Wang, M. G. Li, Y. W. Chen, R. M. Cheng, S. M. Huang, L. K. Pan, and Z. Sun, Appl. Phys. Lett., 89, 1 (2006).
26 A. Afkhami and B. E. Conway, J. of Colloid and Interface Science, 251, 248 (2002).   DOI   ScienceOn
27 L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008).   DOI   ScienceOn
28 B. R. Weinberger and R. B. Garber, Appli. Phys. Lett., 66, 2409 (1995).   DOI   ScienceOn
29 J. C. Farmer, S. M. Bahowick, J. E. Harrar, D. V. Fix, R. E. Martinelli, A. K. Vu, and K. L. Carroll, Energy & Fuels, 11, 337 (1997).   DOI   ScienceOn
30 K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eum, and C. W. Lee, Desalination, 206, 86 (2007).   DOI   ScienceOn
31 A. Porteous, Desalination Technology, Applied Science Publishers, London (1983).
32 C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, J. Korea Ind. Eng. Chem., 15, 294 (2004).
33 J. Wang, L. Angnes, H. Tobias, R. A. Roesner, K. C. Hong, R. S. Glass, F. M. Kong, and R. W. Pekala, Anal. Chem., 65, 2300 (1993).   DOI   ScienceOn
34 R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, J. Non-Cryst. Solids, 255, 74 (1998).
35 R. V. Perez, M. L. Rodriguez, and J. Mengual, Desalination, 137, 199 (2001).   DOI   ScienceOn
36 J. C. Famer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, J. Appl. Electrochem., 26, 1007 (1996).
37 J. A. Trainham and J. Newman, J. Electrochem. Soc., 124, 1528 (1977).   DOI   ScienceOn
38 W. J. Blaedel and J. C. Wang, Anal. Chem., 51, 799 (1979).   DOI   ScienceOn
39 M. Matlosz and J. Newman, J. Electrochem. Soc., 133, 1850 (1986).   DOI   ScienceOn
40 J. C. Farmer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159 (1996).   DOI