Electrochemical Properties of Porous Carbon Electrode as a Function of Internal Electrolyte Concentration

전극 내부의 전해질 농도 변화에 따른 다공성 탄소전극의 전기화학적 특성

  • Park, Byeong-Hee (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • Received : 2009.08.21
  • Accepted : 2009.09.21
  • Published : 2009.12.10

Abstract

The electrochemical properties of porous carbon electrodes as a function of their internal electrolyte concentration were investigated. Cyclic voltammetry, chronoamperometry, and impedance spectroscopic analysis were conducted for carbon electrodes equilibrated with 0.01, 0.05, 0.1, and 0.5 M KCl solution and covered with a cation-exchange membrane. The specific capacitance of the electrodes increased as the internal electrolyte concentration increased, due to a decrease in charging resistance. Experimental results indicated that the salt removal efficiency of the membrane capacitive deionization process could be enhanced by increasing the internal electrolyte concentration, even for an influent with a low salt concentration.

본 연구에서는 다공성 탄소전극의 내부 전해질 농도에 따른 전극의 전기화학적 특성 변화를 연구하였다. 다공성 탄소전극의 내부를 0.01, 0.05, 0.1, 0.5 M KCl 용액으로 채우고 양이온교환막을 결합한 후 cyclic voltammetry, chronoamperometry, impedance spectroscopy 분석을 실시하였다. 실험결과 전극의 특성은 전극 내부의 전해질 농도에 따라 큰 차이를 보였으며 농도가 높을수록 전극 내부의 charging 저항이 감소하여 전기용량이 크게 증가하는 것을 알 수 있었다. 실험결과로부터 이온교환막을 결합한 축전식 탈염공정에서 전극 내부의 전해질 농도를 높임으로써 저 농도의 염수를 효과적으로 탈염할 수 있을 것으로 기대된다.

Keywords

References

  1. T. Younos and K. E. Tulou, J. Contemporary Water Res. Educat., 132, 3 (2005) https://doi.org/10.1111/j.1936-704X.2005.mp132001002.x
  2. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, (2004)
  3. J. C. Farmer, D. V. Fix, G. C. Mack, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159 (1996) https://doi.org/10.1149/1.1836402
  4. J. C. Farmer, D. V. Fix, G. C. Mack, R. W. Pekala, and J. F. Poco, J. Appl. Electrochem., 26, 1007 (1996) https://doi.org/10.1007/BF00242195
  5. K. C. Leonard, J. R. Genthe, J. L. Sanfilippo, W. A. Zeltner, and M. A. Anderson, Electrochim. Acta, 54, 5286 (2009) https://doi.org/10.1016/j.electacta.2009.01.082
  6. J. A. Lim, N. S. Park, J. S. Park, and J. H. Choi, Desalination, 238, 37 (2009) https://doi.org/10.1016/j.desal.2008.01.033
  7. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008) https://doi.org/10.1016/j.desal.2007.07.014
  8. P. Xu, J. E. Drewes, D. Heil, and G. Wang, Water Res., 42, 2605 (2008) https://doi.org/10.1016/j.watres.2008.01.011
  9. L. Zou, L. Li, H. Song, and G. Morris, Water Res., 42, 2340 (2008) https://doi.org/10.1016/j.watres.2007.12.022
  10. T. Y. Ying, K. L. Yang, S. Yiacoumi, and C. Tsouris, J. Colloid Interface Sci., 250, 18 (2002) https://doi.org/10.1006/jcis.2002.8314
  11. M. W. Ryoo, J. H. Kim, and G. Seo, J. Colloid Interface Sci., 264, 414 (2003) https://doi.org/10.1016/S0021-9797(03)00375-8
  12. C. J. Gabelich, T. D. Tran, and I. H. Suffet, Environ. Sci. Technol., 36, 3010 (2002) https://doi.org/10.1021/es0112745
  13. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005) https://doi.org/10.1016/j.desal.2005.02.054
  14. M. W. Ryoo and G. Seo, Water Res., 37, 1527 (2003) https://doi.org/10.1016/S0043-1354(02)00531-6
  15. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008) https://doi.org/10.1016/j.watres.2008.09.026
  16. Y. Gao, L. Pank, Y. P. Zhang, Y. W. Chen, and Z. Sun, Surf. Rev. Lett., 14, 1033 (2007) https://doi.org/10.1142/S0218625X07010597
  17. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, J. Korean Ind. Eng. Chem., 15, 294 (2004)
  18. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999)
  19. Y. Oren, Desalination, 228, 10 (2008) https://doi.org/10.1016/j.desal.2007.08.005
  20. K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eum, and C. W. Lee, Desalination, 206, 86 (2007) https://doi.org/10.1016/j.desal.2006.04.051
  21. J. O. M. Bockris, A. K. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry: Fundamentals of Electrodics, Kluwer Academic/ Plenum Publishers, New York (2000)
  22. H. Pr$\ddot{o}$bstle, C. Schmitt, and J. Fricke, J. Power Sources, 105, 189 (2002) https://doi.org/10.1016/S0378-7753(01)00938-7
  23. H. Pr$\ddot{o}$bstle, M. Wiener, and J. Fricke, J. Porous Mat., 10, 213 (2003) https://doi.org/10.1023/B:JOPO.0000011381.74052.77