DOI QR코드

DOI QR Code

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process

인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과

  • Seong, Du-Ri (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae Su (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2020.03.23
  • Accepted : 2020.06.11
  • Published : 2020.08.01

Abstract

Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.

직물집전체는 에너지 효율이 높은 담수화 방식인 축전식탈염(Capacitive deionization: CDI)시스템에서 유망한 전극 재료가 될 수 있다. 직물집전체의 매력적인 특징 중 하나는 인장강도가 강하다는 것인데, 기계적 강도가 약한 그라파이트 호일 전극의 대안이 될 수 있다. 또한 섬유적 특성으로 인하여 쉽게 형상을 만들 수 있고, 다공성 물질이라는 점과 섬유 간 공간은 수용성 매질의 흐름을 원활하게 해 준다. 본 연구에 사용된 섬유는 도전성 LM fiber와 carbon fiber를 사용한 방적사를 이용하여 직조 구조로 만들어졌으며, 인장강도는 319 MPa로 그라파이트 호일에 비해서 약 60 배 정도 더 강하다. 전극슬러리의 점도, 흡착전압, 공급액의 유량, 공급액의 농도를 변화시켜 가면서 염 제거효율을 측정하여 결과를 분석하였다. NaCl 200 mg/L, 20 ml/min, 흡착전압 1.5 V 조건에서, 단위 셀에서 43.9%, 100개의 셀을 적층한 모듈에서는 59.8%의 염 제거 효율을 각각 보였다. 단위 셀에서는 흡착전압이 1.3, 1.4, 1.5 V로 증가함에 따라 염 제거효율이 증가하다가 1.6과 1.7 V로 증가하면서 염 제거 효율은 감소하였다. 그러나 100 셀 적층 모듈에서는 1.5 V 이상의 전압에서도 염 제거효율이 완만한 증가세를 나타내었다. 공급액의 유량을 증가시켰을 때 염 제거율은 감소하였고, 또한 공급액의 농도를 증가시켰을 때에도 염 제거율은 감소하였다.

Keywords

References

  1. Trainham, J. A. and Newman, J., "A Flow-Through Porous Electrode Model: Application to Metal-Ion Removal from Dilute Streams," J. Electrochem. Soc., 124, 1528(1997). https://doi.org/10.1149/1.2133106
  2. Postel, S. L., Daily, G. C. and Ehrlich, P. R., "Human Appropriation of Renewable Fresh Water," Science, 271, 785-788(1996). https://doi.org/10.1126/science.271.5250.785
  3. Blaedel, W. J. and Wang, J. C., "Flow Electrolysis on a Reticulated Vitreous Carbon Electrode," Anal. Chem., 51, 799-802(1979). https://doi.org/10.1021/ac50043a006
  4. Matlosz, M. and Newman, J., J. Electrochem. Soc., 133, 1850-1886(1986). https://doi.org/10.1149/1.2109035
  5. Welgemoed, T. J. and Schutte, C. F., "Capacitive Deionization $Technology^{TM}$: An Alternative Desalination Solution," Desalination, 183, 327-340(2005). https://doi.org/10.1016/j.desal.2005.02.054
  6. Oren, Y., "Capacitive Deionization (CDI) for Desalination and Water Treatment-Past, Present and Future (a review)," Desalination, 228, 10-29(2008). https://doi.org/10.1016/j.desal.2007.08.005
  7. Anderson, M. A., Cudero, A. L. and Palma, "Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to present desalination practices: Will it compete?," Electrochimica Acta, 55, 3845-3856(2010). https://doi.org/10.1016/j.electacta.2010.02.012
  8. Zou, L. Morris, G. and Qi, D., "Using Activated Carbon Electrode in Electrosorptive Deionisation of Brackish Water," Desalination, 225, 329-340(2008). https://doi.org/10.1016/j.desal.2007.07.014
  9. Biesheuvel, P. M., "J. Colloid Thermodynamic Cycle Analysis for Capacitive Deionization," Interface Sci., 332, 258-264(2009). https://doi.org/10.1016/j.jcis.2008.12.018
  10. Park, B. H., Kim, Y. J., Park, J. S. and Choi, J. H., J. Ind. "Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries," ACS Appl. Mater. Interfaces, 17, 717-722(2011).
  11. Gabelich, C. J., Tran, T. D. and Suffet, I. H., "MEL Environ. Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels," Sci. Technol., 36, 3010-3019(2002). https://doi.org/10.1021/es0112745
  12. Li, H., Zou, L., Pan, L. and Sun, Z., "Environ Novel Graphene-Like Electrodes for Capacitive Deionization," Sci. Technol., 44, 8692-8697(2010). https://doi.org/10.1021/es101888j
  13. Lee, B. R., Jeong, I. J. and Park, S. G., "J. Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization (CDI), " Korean Electrochem. Soc., 16, 123-128(2013). https://doi.org/10.5229/JKES.2013.16.3.123
  14. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C. and Sun, Z., "A Comparative Study on Electrosorptive Behavior of Carbon Nanotubes and Graphene for Capacitive Deionization," J. Electroanal. Chem., 653, 40-44(2011). https://doi.org/10.1016/j.jelechem.2011.01.012
  15. Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M. and Presser, V., Carbon, 122, 329-335(2017). https://doi.org/10.1016/j.carbon.2017.06.077
  16. Moon, D. C., Lee, K. H., Kim, C. S., Kim, D. H., Kim, M. R., Shin, C. H., Park, I. Y., Nam, S. Y. and Lee, C. G., "J. Micropore Analysis and Adsorption Characteristics of Activated Carbon Fibers," Anal. Sci. Technol., 13, 89-95(2000).
  17. Park, C. O., Oh, J. S. and Lim, J. W., "Anti-fouling Graphenebased Membranes for Effective Water Desalination," Membrane Journal, 28, 271-283(2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.271
  18. Youngmee, B., "A Study on the Characteristics of Natural Preservative Agent-treated Fabrics for Textile Cultural Properties Preservation," Science Journal, 25, 197-206(2009).
  19. Young, J. J., Myoung, H. L., Hae, W. C. and Kee, H. L., "Thermal Characteristics of a Wet Clutch," Dept of Textile Eng., 121(3), 610-617(1999).