• Title/Summary/Keyword: cancer cell migration

Search Result 510, Processing Time 0.023 seconds

Dendropanax morbifera Extract Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Arteries by Modulating Phenotypic Changes in Vascular Smooth Muscle Cells

  • Lim, Leejin;Jo, Juyeong;Yoon, Sang Pil;Jang, Inyoub;Ki, Young-Jae;Choi, Dong-Hyun;Song, Heesang
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • The plant Dendropanax morbifera Léveille is effective folk medicines for the treatment of several conditions, such as infectious diseases, skin diseases, and other illnesses. Although the inhibitory effects of D. morbifera on the proliferation and migration of vascular smooth muscle cells (VSMCs) have been shown in our previous study, its effects in vivo remain to be elucidated. In this study, we aimed to investigate the protective effects of the extracts from D. morbifera (EDM) on neointimal hyperplasia of rat carotid artery and explore the underlying mechanisms. We observed that the ratio of intima to media thickness (I/M) was significantly decreased in the EDM-treated groups by ~80% compared to that of the control. The expression of Ki-67 and proliferating cell nuclear antigen was decreased by ~70% in the EDM-treated groups compared to that of the control. In addition, matrix metalloproteinase (MMP)2 and MMP9 significantly reduced in the neointimal layer of the EDM-treated groups. Moreover, the decreased levels of contractile phenotypic markers of VSMCs, such as α-smooth muscle actin, myocardin, and smooth muscle-myosin heavy chain, were successfully restored by EDM treatment. Furthermore, the levels of synthetic phenotypic markers, cellular retinal binding protein 1 and connexin 43 were also restored to normal levels. These results suggest that EDM inhibits vascular neointimal hyperplasia induced by balloon injury in rats via phenotypic modulation of VSMCs. Therefore, EDM may be a potential drug candidate for the prevention of restenosis.

Inhibitory Effects of Carex pumila Extracts on MMP-2 and MMP-9 Activities in HT-1080 Cells (HT-1080 세포주에서 좀보리사초 추출물의 MMP-2와 MMP-9 활성 억제효과)

  • Kim, Junse;Kong, Chang-Suk;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • Matrix metalloproteinases (MMPs) are associated with the invasion and metastasis of malignant tumors composed of cancer cells in an increased state of expression. This study evaluates the inhibitory effect of Carex pumila on MMP-2 and MMP-9 activity in phorbol-12-myristate-13-acetate (PMA)-stimulated HT-1080 human fibrosarcoma cells using gelatin zymography, MMPs enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay. C. pumila was extracted twice with dichloromethane ($CH_2Cl_2$) and methanol (MeOH). Treatment with $CH_2Cl_2$ extract and MeOH extract in PMA-stimulated HT-1080 cells effectively reduced the production of MMP-2 and 9. Also, the combined crude extracts ($CH_2Cl_2$ and MeOH) significantly inhibited the enzymatic activities and the expression of MMP-2 and MMP-9 in mRNA and protein levels. The combined crude extracts were partitioned between $CH_2Cl_2$ and water. The organic layer was further fractionated with n-hexane, 85% aqueous methanol (85% aq.MeOH) and the aqueous layer was separated into n-butanol and water, successively. Of the fractions, 85% aq.MeOH fraction showed the highest inhibitory activity of MMP-2 and MMP-9 in gelatin zymography and MMP ELISA kit. Furthermore, 85% aq.MeOH fraction most significantly suppressed cell migration. In RT-PCR and Western blot assay, n-butanol and 85% aq.MeOH fractions exerted the greatest inhibition on mRNA and protein expression of MMP-2 and MMP-9, respectively. As a result, C. pumila can be used as a good anti-invasive agent source.

Negative Regulation of Tumor Suppressor p53 at the Promoter Regions of Oncogenic SETDB1 and FosB Genes (암종양유전자 SETDB1과 FosB 발현에 대한 p53의 음성 조절기작)

  • Yun, Hyeon Ji;Na, Han-Heom;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1070-1077
    • /
    • 2020
  • Treatment with anticancer drugs changes the expression of multiple genes related to cell proliferation, migration, and drug resistance. These changes in gene expression may be connected to regulatory networks for each other. This study showed that doxorubicin treatment induces the expression of oncogenic FosB and decreases the expression of oncogenic SETDB1 in A549 and H1299 human lung cancer cells, which are different in tumor suppressor p53 status. However, a small difference was detected in the quantitative expression of those proteins in the two kinds of cells. To examine the potential regulation of SETDB1 and FosB by p53, we predicted putative p53 binding sites on the genomic DNA of SETDB1 and FosB using a TF motif binding search program. These putative p53 binding sites were identified as 18 sites in the promoter regions of SETDB1 and 21 sites in the genomic DNA of FosB. A luciferase assay confirmed that p53 negatively regulated the promoter activities of SETDB1 and FosB. Furthermore, the results of RT-PCR, western blot, qPCR, and immunostaining experiments indicated that the transfection of exogenous p53 decreases the expression of SETDB1 and FosB in H1299 cells. This indicates that p53 negatively regulates the expression of SETDB1 and FosB at the transcriptional level. Collectively, the downregulation of SETDB1 and FosB by p53 may provide functional networks for apoptosis and for the survival of cancer cells during anticancer drug treatment.

Antimutagenic Effects of Ginsenoside Rb$_1$, Rg$_1$ in the CHO-K1 Cells by Benzo[a]pyrene with Chromosomal Aberration Test and Comet Assay

  • Kim, Jong-Kyu;Kim, Soo-Jin;Rim, Kyung-Taek;Cho, Hae-Won;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.126-132
    • /
    • 2009
  • The usage and types of chemicals are advancing, specializing, large-scaled increasing, and new chemical exposed workers are concerning to occupational disease. The generation of reactive oxygen in the body from carcinogen, mutation and DNA damage in cancer is protected by natural antioxidants (phytochemicals) with antimutagenic effect. There were many reports of ginsenoside Rb$_1$, Rg$_1$ grievances of the genetic mutation to suppress the effect confirm the genetic toxicity test with chromosomal aberration test and the Comet (SCGE) assay confirmed the suppression effect occurring chromosomal DNA damage. We had wanted to evaluate the compatibility and sensitivity between the chromosomal aberration (CA) test and the Comet assay. We used the CA test and Comet assay to evaluate the anti-genotoxicity of ginsenoside Rb$_1$ and Rg$_1$, in CHO-K1 (Chinese hamster ovary fibroblast) cell in vitro, composed negative control (solvent), positive control (benzo[a]pyrene), test group (carcinogen+variety concentration of ginsenoside) group. The positive control was benzo[a]pyrene (50 $\mu$M), well-known carcinogen, and the negative control was the 1 % DMSO solvent. The test group was a variety concentration of ginsenoside Rb$_1$, Rg$_1$ with 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10%. In chromo-somal aberration test, we measured the number of cells with abnormally structured chromosome. In Comet assay, the Olive tail moment (OTM) and Tail length (TL) values were measured. The ratio of cell proliferation was increased 8.3% in 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10% Rb$_1$ treated groups, and increased 10.4% in 10$^{-10}$%, 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1% Rg$_1$ treated groups. In the CA test, the number of chromosomal aberration was decreased all the Rb$_1$ and Rg$_1$ treated groups. In the Comet assay, the OTM values were decreased in all the Rb$_1$ and Rg$_1$ treated groups. To evaluate the compatibility between CA and Comet assay, we compared the reducing ratio of chromosomal abnormalities with its OTM values, it was identified the antimutagenicity of ginsenoside, but it was more sensitive the CA test than the Comet assay. Ginsenoside Rb$_1$ and Rg$_1$ significantly decrease the number of cells with chromosomal aberration, and decrease the extent of DNA migration. Therefore, ginsenoside Rb$_1$, Rg$_1$ are thought as an antioxidant phytochemicals to protect mutagenicity. The in vitro Comet assay seems to be less sensitive than the in vitro chromosomal aberration test.

Anticancer activity of chloroform extract of Citrus unshiu Markovich peel against glioblastoma stem cells (교모세포종 암줄기세포에 대한 진피 소수성 추출물의 항암 활성)

  • Kim, Yu Jin;Sim, Ye Eun;Jung, Hye Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • Glioblastoma is the most common primary malignant brain tumor and has an extremely poor prognosis. Glioblastoma stem cells (GSCs) contribute to tumor initiation, recurrence, and resistance to therapy, and are thus a key therapeutic target. The peel of Citrus unshiu Markovich has been used in traditional medicine in East Asia to treat various diseases. In this study, we investigated the anticancer activity and molecular mechanism of the chloroform extract of this natural product (CECU) in U87MG GSCs. The results show that CECU inhibited the proliferation, tumorsphere formation, and migration of U87MG GSCs by causing cell cycle arrest at the G0/G1 phase and apoptosis. In addition, CECU downregulated key cancer stemness regulators, including CD133, Oct4, Nanog, integrin α6, ALDH1A1, and STAT3 signaling in U87MG GSCs. Furthermore, CECU significantly suppressed in vivo tumor growth of U87MG GSCs in a chorioallantoic membrane model. Therefore, CECU can be utilized as a natural medicine for the prevention and treatment of glioblastoma.

Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2

  • Enkhtaivan, Enkhmend;Kim, Hyun Ji;Kim, Boram;Byun, Hyung Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Do, Phuong Anh;Kim, Eun Ji;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Jang, Ji Yun;Rho, Seung Bae;Lee, Ho;Kang, Gyeoung Jin;Park, Mi Kyung;Kim, Nan-Hyung;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Lee, Ai Young;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.203-211
    • /
    • 2022
  • Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.

Immunohistochemical Studies for TIMP-1 and TIMP-2 Expression after Irradiation in Lung, Liver and Kidney of C57BL/6 Mouse (C57BL/96 Mouse의 폐, 간, 신장에서 방사선조사 후 TIMP-1, TIMP-2의 발현에 대한 면역조직화학적 연구)

  • Noh, Young-Ju;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2001
  • Purpose : Changes in the balance between MMP and TIMP can have a profound effect on the composition in the extracellular matrix (ECM) and affect various cellular functions including adhesion, migration, differentiation of cells, and fibrosis and invasion and metastasis of cancer cells. Radiation therapy is a popular treatment modality for benign and malignant tumor, but the study for radiation effect on MMP and TIMP is scarce. In the current study, we have examined the expression of TIMP in fibrosis-prone (C57BL/6) mice after radiation. Methods and Materials : Adult female mice of $10\~12$ weeks were used. The whole body were irradiated using a Varian CL-4/100 with 2 and 10 Gy. Immunohistochemical staining was peformed according to Avidin Biotin complex method and evaluated by observing high power field. For TIMP-1, TIMP-2 antibodies, reactivity was assessed in the parenchymal cell and in the stromal cell. The scale of staining was assessed by combining the quantitative and qualiative intensity of staining. Results : TIMP-1 immunoreactivity did not change in lung. But, in liver, TIMP-1 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell. in kidney, TIMP-1 immunoreactivity was localized in cytoplasm of some tubular cell. Temporal variations were not seen. Dose-response relationship was not seen except kidney. TIMP-2 immunoreactivity in lung was a score (++) at 0 Gy and elevated to a score (+++) at 2 Gy. TIMP-2 immunoreactivity was a score (++) in liver at 0 Gy. TIMP-2 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell as same as patterns of TIMP-1 immunoreactivity. The TIMP-2 immunoreactivity in liver was elevated to (+++) at 2 Gy. Immunoreactivity to TIMP-2 in kidney was a score (+++) at 0 Gy and was not changed at 10 Gy. The score of TIMP-2 immunoreactivity was reduced to (++) at 2 Gy. TIMP-2 immunoreactivity was confined to tubules in kidney. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIMP-2 immunoreactivity was not seen. Conclusions : Differences between intensity of expression of TIMP-1 and TIMP-2 in each organ was present. Expression of TIMP was localized to specific cell in each organ. Irradiation increased TIMP-1 immunoreactivity in the liver and the kidney. Irradiation increased TIMP-2 immunoreactivity in the lung. But, in the liver and the kidney, TIMP-2 expression to radiation was irregular. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIHP-2 immunoreactivity was not seen. In the future, we expect that the study of immunohistochemical staining of longer period of postirradiation and quantitative analysis using western blotting and northern blotting could define the role of TIMP in the radiation induced tissue fibrosis.

  • PDF

The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo (in Vitro와 ex vivo에서 황백 온수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Bae, Kiho;Kim, Han Sung;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.693-702
    • /
    • 2015
  • Blocking new blood-vessel formation (angiogenesis) is now recognized as a useful approach to the therapeutic treatment of many solid tumors. The best validated approach to date is to target the vascular endothelial growth-factor (VEGF) pathway, a key regulator of angiogenesis. Many natural products and extracts that contain a variety of chemopreventive compounds have been shown to suppress the development of malignancies through their anti-angiogenic properties. Phellodendron amurense, which is widely used in Korean traditional medicine, has been shown to possess antitumor, antimicrobial, and anti-inflammatory properties, among others. The present study investigated the effects of P. amurense hot-water extract (PAHWE) on angiogenesis, a key process in tumor growth, invasion, and metastasis. To investigate PAHWE’s anti-angiogenic properties, this study’s authors performed an analysis of angiogenesis and endothelial-cell proliferation, migration, invasion, and tube formation, as well as zymogram assays and the rat aortic ring-sprouting assay. PAHWE inhibited cell growth, mobility, and vessel formation in response to VEGF in vitro and ex vivo. Furthermore, it reduced VEGF-induced intracellular signaling events, such as the activation of matrix metalloproteinases (MMPs) -2 and -9. These results indicate that PAHWE’s anti-angiogenic properties might lead to the development of potential drugs for treating angiogenesis-associated diseases such as cancer.

Effect of Interleukin-12 on the Expression of E-selectin in Mouse Model of Lewis Lung Carcinoma (Lewis 폐암 마우스 모델에서 Interleukin-12가 E-selectin 발현에 미치는 영향)

  • Lee, Sang-Haak;Shin, Yoon;Yoon, Hyoung-Kyu;Lee, Sook-Young;Kim, Seok-Chan;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.161-171
    • /
    • 1999
  • Background: Interleukin-12 (IL-12) can induce antitumor effects in vivo. This antitumor effect is associated with T cell infiltration but the effect of IL-12 on the steps of T cell migration into the tumor tissue has not been fully elucidated. This study focused on the effect of IL-12 on the tumor growth and the metastasis and on the expression of E-selectin, an adhesion molecule which is activated endothelial specific in its expression. In addition, we studied whether the expression of E-selectin is associated with the TNF-$\alpha$, a cytokine that its production is increased by IL-12 and has functions inducing a variety of adhesion molecules. Methods: Mice of C57BL/6 strain were injected with Lewis lung cancer cells followed by either IL-12, TNF-$\alpha$, or normal saline by intraperitoneal route. Twenty eight days after tumor cell inoculation, metastatic nodules of lung were enumerated and immunohistochemical staining of the subcutaneous tumors were performed with monoclonal antibodies to CD4, CD8, CD16, and E-selectin. In IL-12 treated mice, the subcutaneously implanted Lewis lung tumors were decreased in size and the metastases were also decreased in number compared to control mice. On tumor tissues, increased infiltration of CD4+, CD8+, and CD16+ cells were oberved in IL-12 treated mice compared to control mice. In control mice, E-selectin was absent on tumor vessels, but the expression of E-selectin was increased on tumor vessels of IL-12 treated mice. Administration of TNF-$\alpha$ increased not only the expression of E-selectin but also infiltrations of CD4+, CD8+, and CD16+ cells on tumor tissues. Conclusions: These results demonstrate that IL-12 inhibits tumor growth and metastases through infiltrations of inflammatory cells in mouse model of Lewis lung carcinoma and E-selectin may playa role in inflammatory cell recruitment on tumor tissue following IL-12 administration. Also, TNF-$\alpha$ may have a role as a mediator responsible for the IL-12 induced expression of E-selectin.

  • PDF

Extract from Prunus mume Sieb. et Zucc. Fruit Prevents LPS-induced Homotypic Aggregation of Monocytic THP-1 Cells via Suppression of Nitric Oxide Production and NF-κB Activation (매실 추출물의 산화질소 생성과 NF-κB 활성 조절을 통한 LPS유도성 THP-1 세포 동형성 응집의 억제 효과)

  • Lee, Hye-Rim;Park, Youngsook;Kim, Hyun Jeong;Lee, Aram;Choi, Jihea;Pyee, Jaeho;Park, Heonyong;Kim, Jongmin
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.801-809
    • /
    • 2015
  • Homotypic cell adhesion (homotypic aggregation) in activated monocytes plays a central role in physiological and pathological processes including inflammatory responses, differentiation and migration. The extract of the Prunus mume Sieb. et Zucc. fruit (Maesil) has potential benefits to human health; such as anti-viral, anti-microbial, and anti-cancer activities. Indeed, Maesil extract may modulate inflammatory responses via interference with homotypic aggregation in monocytes. In the present study, the molecular mechanisms underpinning the therapeutic efficacy of Maesil extract in inflammatory diseases were investigated. It was found that Maesil extract inhibited homotypic aggregation in lipopolysaccharide (LPS)-activated monocytes. This was mediated by reduction of nitric oxide (NO) production, partly via inhibition of inducible nitric oxide synthase (iNOS) expression in LPS-activated THP-1 cells. It was confirmed that NO inhibition is a key mechanism in Maesil induced blockade of monocyte aggregation through identification of reversal of this inhibitory effect by the NO-producing agent S-nitroso-N-acetyl penicillamine (SNAP). In addition, Maesil extract significantly attenuated LPS-induced IκB-α phosphorylation and NF-κB translocation into the nucleus. In conclusion, Maesil extract exerts anti-inflammatory effects via inhibition of homotypic aggregation of LPS-activated monocytes through mechanisms involving the suppression of NO production and NF-κB activity, suggesting Maesil extract as a potential therapeutic candidate for the prevention and treatment of chronic inflammatory diseases.