Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.12.1070

Negative Regulation of Tumor Suppressor p53 at the Promoter Regions of Oncogenic SETDB1 and FosB Genes  

Yun, Hyeon Ji (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Na, Han-Heom (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Kim, Keun-Cheol (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Publication Information
Journal of Life Science / v.30, no.12, 2020 , pp. 1070-1077 More about this Journal
Abstract
Treatment with anticancer drugs changes the expression of multiple genes related to cell proliferation, migration, and drug resistance. These changes in gene expression may be connected to regulatory networks for each other. This study showed that doxorubicin treatment induces the expression of oncogenic FosB and decreases the expression of oncogenic SETDB1 in A549 and H1299 human lung cancer cells, which are different in tumor suppressor p53 status. However, a small difference was detected in the quantitative expression of those proteins in the two kinds of cells. To examine the potential regulation of SETDB1 and FosB by p53, we predicted putative p53 binding sites on the genomic DNA of SETDB1 and FosB using a TF motif binding search program. These putative p53 binding sites were identified as 18 sites in the promoter regions of SETDB1 and 21 sites in the genomic DNA of FosB. A luciferase assay confirmed that p53 negatively regulated the promoter activities of SETDB1 and FosB. Furthermore, the results of RT-PCR, western blot, qPCR, and immunostaining experiments indicated that the transfection of exogenous p53 decreases the expression of SETDB1 and FosB in H1299 cells. This indicates that p53 negatively regulates the expression of SETDB1 and FosB at the transcriptional level. Collectively, the downregulation of SETDB1 and FosB by p53 may provide functional networks for apoptosis and for the survival of cancer cells during anticancer drug treatment.
Keywords
FosB; negative regulation; p53; promoter; SETDB1;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Wu, P. C., Lu, J. W., Yang, J. Y., Lin, I. H., Ou, D. L., Lin, Y. H., Chou, K. H., Huang, W. F., Wang, W. P., Huang, Y. L., Hsu, C., Lin, L. I., Lin, Y. M., Shen, C. K. and Tzeng, T. Y. 2014. H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res. 74, 7333-7343.   DOI
2 Xu, H., Zhang, R., Li, X., Liu, Z., Wang, Y. and Zhang, H. 2020. EZH2 inhibitors-mediated epigenetic reactivation of FOSB inhibits triple-negative breast cancer progress. Cancer Cell Int. 20, 175.   DOI
3 Li, T., Kon, N., Jiang, L., Tan, M., Ludwig, T., Zhao, Y., Baer, R. and Gu, W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269-1283.   DOI
4 Liu, S., Luan, J. and Ding, Y. 2018. miR-144-3p Targets FosB Proto-oncogene, AP-1 Transcription Factor Subunit (FOSB) to suppress proliferation, migration, and invasion of PANC-1 pancreatic cancer cells. Oncol. Res. 26, 683-690.   DOI
5 Na, H. H., Kang, Y. S. and Kim, K. C. 2017. Cloning and activity analysis of the FosB promoter region from human genomic DNA. J. Life Sci. 27, 857-863.   DOI
6 Seoane, J., Le, H. and Massague, J. 2002. Myc suppression of the p21 Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734.   DOI
7 Shahzad, M. M., Arevalo, J. M., Armaiz-Pena, G. N., Lu, C., Stone, R. L., Moreno-Smith, M., Nishimura, M., Lee, J. W., Jennings, N. B., Bottsford-Miller, J., Vivas-Mejia, P., Lutgendorf, S. K., Lopez-Berestein, G., Bar-Eli, M., Cole, S. W. and Sood, A. K. 2010. Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J. Biol. Chem. 285, 35462-35470.   DOI
8 Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. and Krammer, P. H. 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033-2045.   DOI
9 Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. and Strasser, A. 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25, 104-113.   DOI
10 Bamberger, A., Methner, C., Lisboa, B. W., Stadtler, C. H., Schulte, M., Loning, T. and Milde Langosch, K. 1999. Expression pattern of the AP 1 family in breast cancer: Association of fosB expression with a well differentiated, receptor positive tumor phenotype. Int. J. Cancer 84, 533-538.   DOI
11 Barrett, C. S., Millena, A. C. and Khan, S. A. 2017. TGF-β effects on prostate cancer cell migration and invasion require FosB. Prostate 77, 72-81.   DOI
12 Sun, Q., Ding, L., Xiao, J., Chien, W., Lim, S., Hattori, N., Goodglick, L., Chia, D., Mah, V. and Alavi, M. 2015. SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. J. Pathol. 235, 559-570.   DOI
13 Michael, D. and Oren, M. 2003. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49-58.   DOI
14 Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H., Liebermann, D. A., Hoffman, B. and Reed, J. C. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799-1805.
15 Siderovski, D. P., Blum, S., Forsdyke, R. E. and Forsdyke, D. R. 1990. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA Cell Biol. 9, 579-587.   DOI
16 Sun, Y., Wei, M., Ren, S. C., Chen, R., Xu, W. D., Wang, F. B., Lu, J., Shen, J., Y. Yu, W. J., Hou, G., Xu, C. L., Huang, J. T. and Sun, Y. H. 2014. Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion. Asian J. Androl. 16, 319-324.   DOI
17 Wisdom, R. and Verma, I. M. 1993. Proto-oncogene FosB: the amino terminus encodes a regulatory function required for transformation. Mol. Cell Biol. 13, 2635-2643.   DOI
18 Surget, S., Khoury, M. P. and Bourdon, J. C. 2013. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 7, 57-68.
19 Toufektchan, E. and Toledo, F. 2018. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers (Basel) 10, 135.   DOI
20 Williams, A. B. and Schumacher, B. 2016. p53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med. 6, 10.
21 Nihira, N. T., Ogura, K., Shimizu, K., North, B. J., Zhang, J., Gao, D., Inuzuka, H. and Wei, W. 2017. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci. Signal. 10, 1126.
22 Na, H. H., Noh, H. J., Cheong, H. M., Kang, Y. S. and Kim, K. C. 2016. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB. Rep. 49, 238-243.   DOI
23 Nestler, E. J. 2004. Molecular mechanisms of drug addiction. J. Neurosci. 47, 24-32.
24 Nestler, E. J. and Malenka, R. C. 2004. The addicted brain. Sci. Am. 290, 78-85.   DOI
25 Noh, H., Kim, K., Cho, H., Chang, Y., Jang, W. H., Seog, D., Kim, J., Kim, B., Kwon, H. and Kim, Y. 2014. Promoter cloning of human SETDB1 gene utilizing bioinformatic programs. J. Life Sci. 24, 1-7.   DOI
26 Noh, H. J, Kim, K. A. and Kim, K. C. 2014. p53 down-regulates SETDB1 gene expression during paclitaxel induced-cell death. Biochem. Biophys. Res. Commun. 446, 43-48.   DOI
27 Fridman, J. S. and Lowe, S. W. 2003. Control of apoptosis by p53. Oncogene 22, 9030-9040.   DOI
28 Ceol, C. J., Houvras, Y., Jane-Valbuena, J., Bilodeau, S., Orlando, D. A., Battisti, V., Fritsch, L., Lin, W. M., Hollmann, T. J. and Ferre, F. 2011. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513-517.   DOI
29 Donehower, L. A. 2014. Phosphatases reverse p53-mediated cell cycle checkpoints. Proc. Natl. Acad. Sci. USA. 111, 7172-7173.   DOI
30 Fei, Q., Shang, K., Zhang, J., Chuai, S., Kong, D., Zhou, T., Fu, S., Liang, Y., Li, C. and Chen, Z. 2015. Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. Nat. Commun. 6, 1-12.
31 Guo, J., Dai, X., Laurent, B., Zheng, N., Gan, W., Zhang, J., Guo, A., Yuan, M., Liu, P. and Asara, J. M. 2019. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat. Cell Biol. 21, 226-237.   DOI
32 Han, E. S., Muller, F. L., Perez, V. I., Qi, W., Liang, H., Xi, L., Fu, C., Doyle, E., Hickey, M., Cornell, J., Epstein, C. J., Roberts, L. J., Van Remmen, H. and Richardson, A. 2008. The in vivo gene expression signature of oxidative stress. Physiol. Genomics 34, 112-126.   DOI
33 Lee, J. and Kim, K. 2013. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells. Biochem. Biophys. Res. Commun. 438, 647-652.   DOI
34 Ruffle, J. K. 2014. Molecular neurobiology of addiction: what's all the (Δ) FosB about? Am. J. Drug Alcohol Abuse 40, 428-437.   DOI