• Title/Summary/Keyword: cancer cell growth inhibition

Search Result 816, Processing Time 0.021 seconds

Exogenous Morphine Inhibits Human Gastric Cancer MGC-803 Cell Growth by Cell Cycle Arrest and Apoptosis Induction

  • Qin, Yi;Chen, Jing;Li, Li;Liao, Chun-Jie;Liang, Yu-Bing;Guan, En-Jian;Xie, Yu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1377-1382
    • /
    • 2012
  • Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-${\kappa}B$ using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-${\kappa}B$ were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-${\kappa}B$.

ER81-shRNA Inhibits Growth of Triple-negative Human Breast Cancer Cell Line MDA-MB-231 In Vivo and in Vitro

  • Chen, Yue;Zou, Hong;Yang, Li-Ying;Li, Yuan;Wang, Li;Hao, Yan;Yang, Ju-Lun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2385-2392
    • /
    • 2012
  • The lack of effective treatment targets for triple-negative breast cancers make them unfitted for endocrine or HER2 targeted therapy, and their prognosis is poor. Transcription factor ER81, a downstream gene of the HER2, is highly expressed in breast cancer lines, breast atypical hyperplasia and primary breast cancers including triple-negative examples. However, whether and how ER81 affects breast cancer carcinogenesis have remained elusive. We here assessed influence on a triple-negative cell line. ER81-shRNA was employed to silence ER81 expression in the MDA-MB-231 cell line, and MTT, colony-forming assays, and flow cytometry were used to detect cell proliferation, colony-forming capability, cell cycle distribution, and cell apoptosis in vitro. MDA-MB-231 cells stably transfected with ER81-shRNA were inoculated into nude mice, and growth inhibition of the cells was observed in vivo. We found that ER81 mRNA and protein expression in MDA-MB-231 cells was noticeably reduced by ER81-shRNA, and that cell proliferation and clonality were decreased significantly. ER81-shRNA further increased cell apoptosis and the residence time in $G_0/G_1$ phase, while delaying tumor-formation and growth rate in nude mice. It is concluded that ER81 may play an important role in the progression of breast cancer and may be a potentially valuable target for therapy, especially for triple negative breast cancer.

MicroRNA Analysis in Normal Human Oral Keratinocytes and YD-38 Human Oral Cancer Cells

  • Kim, Hye-Ryun;Park, Eu-Teum;Cho, Kwang-Hee;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.179-185
    • /
    • 2011
  • MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.

Effects of Mitosene Analogues on Growth Inhibition of Human Cervical Cancer Cell Lines (Mitosene유사체의 자궁암세포주 성장억제 효과)

  • Dong-Soo Cha;Soo-Kie Kim;Chan-Mug Ahn;Sun-Ju Choi;Yoon-Sun Park;Sang-Won Han
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • To develop a promising alkylating agents for anti-cervical cancer chemotherapy, five mitosene analogues were synthesized. Despite the potentiality of better cytotoxicity on solid tumor cells as opposed to that on rapidly-doubled leukemic cells, there have been no reports on the inhibition of the cervical cancer cell line by mitosene analogues. The present experiment was designed to investigate whether mitosene analogues can effectively inhibit the cellular proliferation of cervical cancer cells by using an in vitro chemosensitivty system. The mitosene analogues displayed a potent cytotoxic effect on the tested cervical cancer cell lines. Among the analogues, (22) compound gave the best inhibitory effect on SiHa tumor colonies formation. These data indicate that mitosene analogues can effectively inhibit the growth of cervical cancer cells in vitro.

  • PDF

Pharmacological potential of Cordyceps militaris with enhanced Cordycepin production for anti-inflammatory and tumor cell anti-proliferative applications

  • Ha, Si-Young;Jung, Ji-Young;Yang, Jae-Kyung
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.93-101
    • /
    • 2022
  • Cordyceps militaris mycelium extracts containing high amounts of cordycepin were evaluated in vitro for their anti-inflammatory and tumor cell growth-inhibitory activities. All extracts dose dependently inhibited the increased production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), and 𝛽-hexosaminidase in lipopolysaccharide (LPS)-stimulated inflammatory cells. All extracts were evaluated for anti-proliferative activity against normal RBL-2H3 cells and diverse types of cancer cell lines, including HCT, MC5-7, U-87MG, AGS, and A549 cells. The extract showed the strongest growth inhibition (IC50 = 28.13 ㎍/mL) relative to vehicle-treated control cells against fibrosarcoma (MC5-7). We have demonstrated anti-inflammatory activity of C. militaris via inhibition of NO, ROS production, and 𝛽-hexosaminidase release in activated cells. C. militaris mycelium extract was also evaluated mechanistically and found to exert six types of anti-cancer activity, confirming its pharmacological potential. Our study suggests C. militaris use as a potential source of anti-inflammatory and anti-cancer agents. C. militaris may also be considered a functional food.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

Effects of Arsenic Compounds $(AS_2O_3\;and\;AS_4O_6)$ on the Induction of Apoptotic Cell Death in A549 Human Non-small Cell Lung Cancer Cells (비소화합물에 의한 A549 폐암세포의 증식억제에 관한 연구)

  • Choi, Yung-Hyun;Choi, Woo-Young;Choi, Byung-Tae;Lee, Yong-Tae;Lee, Won-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1050-1054
    • /
    • 2005
  • Recently, arsenic compounds were considered as novel agents for treatment of acute promyelocytic leukemia and malignant tumors. However, it showed severe toxicity effect on normal tissue at the same time. In this study, to investigate the possible molecular mechanism (s) of arsenic compounds as candidate of anti-cancer drugs, we compared the abilities of two arsenic compounds, tetraarsenic oxide $(AS_4O_6)$ and arsenic trioxide (diarsenic oxide, $As_2O_3$), to induce cell growth inhibition as well as apoptosis induction in A549 human non-small cell lung cancer cells. Both $As_4O_6\;and\;As_2O_3$ treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of G1 arrest of the cell cycle and apoptotic cell death. However, $As_4O_6$ induced growth inhibition and apoptosis in A549 cells at much lower concentrations than $As_2O_3.\;As_4O_6$ down-regulated the levels of anti-apoptotic Bcl-2 protein, however, the levels of Bax, a pro-apoptotic protein, were up-regulated in a dose-dependent manner. In conclusion, $As_4O_6$ might be a new arsenic compound which may induce apoptosis in A549 cells by modulation the Bcl-2 family and deserves further evaluation.

Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways

  • Hwang, Yu-Jin;Lee, Eun-Ju;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.611-616
    • /
    • 2013
  • Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation.