Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.184

Cancer Energy Metabolism: Shutting Power off Cancer Factory  

Kim, Soo-Youl (Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 39-44 More about this Journal
Abstract
In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.
Keywords
Cancer energy metabolism; Warburg effect; TCA cycle; Malate-aspartate shuttle; Electron transport chain; Oxidative phosphorylation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Carracedo, A., Cantley, L. C. and Pandolfi, P. P. (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232.   DOI
2 Chandel, N. S., Budinger, G. R., Choe, S. H. and Schumacker, P. T. (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808-18816.   DOI
3 Cheong, J. H., Park, E. S., Liang, J., Dennison, J. B., Tsavachidou, D., Nguyen-Charles, C., Wa Cheng, K., Hall, H., Zhang, D., Lu, Y., Ravoori, M., Kundra, V., Ajani, J., Lee, J. S., Ki Hong, W. and Mills, G. B. (2011) Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol. Cancer Ther. 10, 2350-2362.   DOI
4 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20.   DOI
5 DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350.   DOI
6 Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate metabolism in human lung tumors. Cell 171, 358-371.e9.   DOI
7 Greenhouse, W. V. and Lehninger, A. L. (1977) Magnitude of malateaspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 37, 4173-4181.
8 Kang, J. H., Lee, S. H., Hong, D., Lee, J. S., Ahn, H. S., Ahn, J. H., Seong, T. W., Lee, C. H., Jang, H., Hong, K. M., Lee, C., Lee, J. H. and Kim, S. Y. (2016a) Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 48, e272.   DOI
9 Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185.   DOI
10 Kang, J. H., Lee, S. H., Lee, J. S., Nam, B., Seong, T. W., Son, J., Jang, H., Hong, K. M., Lee, C. and Kim, S. Y. (2016b) Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 7, 49397-49410.
11 Lee, J. S., Kang, J. H., Lee, S. H., Hong, D., Son, J., Hong, K. M., Song, J. and Kim, S. Y. (2016a) Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511.   DOI
12 Lee, J. S., Kang, J. H., Lee, S. H., Lee, C. H., Son, J. and Kim, S. Y. (2016b) Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC. Biochem. Biophys. Res. Commun. 477, 374-382.   DOI
13 McKeehan, W. L. (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol. Int. Rep. 6, 635-650.   DOI
14 Warburg, O. (1956b) On the origin of cancer cells. Science 123, 309-314.   DOI
15 Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescos, C., Di Croce, L. and Benitah, S. A. (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45.   DOI
16 Patra, K. C. and Hay, N. (2014) The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354.
17 Reitzer, L. J., Wice, B. M. and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676.
18 Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
19 Warburg, O. (1956a) On respiratory impairment in cancer cells. Science 124, 269-270.
20 Wu, L., Feng, Z., Cui, S., Hou, K., Tang, L., Zhou, J., Cai, G., Xie, Y., Hong, Q., Fu, B. and Chen, X. (2013) Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE 8, e63799.   DOI
21 Yang, M. and Vousden, K. H. (2016) Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650-662.   DOI
22 Zaidi, N., Swinnen, J. V. and Smans, K. (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709-3714.   DOI