• Title/Summary/Keyword: calvarial bone

Search Result 286, Processing Time 0.027 seconds

Osteoporotic bone phenotype in Mats1/2 double-mutant mice (Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구)

  • Oh, Juhwan;Choi, YunJeong;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects

  • Da-Na Lee;Jin-Young Park;Young-Wook Seo;Xiang Jin;Jongmin Hong;Amitava Bhattacharyya;Insup Noh;Seong-Ho Choi
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.321-335
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. Methods: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. Results: Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. Conclusions: There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.

The Effect of $\beta$-Tricalcium Phosphate and Deproteinized Bovine Bone on Bone Formation in the Defects of Rat Calvaria (흰쥐 두개골 결손부에서 베타-트리칼슘 인산염과 탈단백우골의 골형성 효과)

  • Jung, Seung-Gon;Park, Hong-Ju;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.313-323
    • /
    • 2010
  • Purpose: This study was conducted to evaluate the effect of beta-tricalcium phosphate (Cerasorb$^{(R)}$, Germany) and deproteinized bovine bone (Bio-Oss$^{(R)}$, Switzerland) grafted to the defect of rat calvaria artificially created and the effect of use of absorbable membrane (BioMesh$^{(R)}$, Korea) on new bone formation. Materials and Methods: Transosseous circular calvarial defects with diameters of 5 mm were prepared in the both parietal bone of 30 rats. In the control group I, no specific treatment was done on the defects. In the control group II, the defects were covered with absorbable membrane. In the experimental group I, deproteinized bovine bone was grafted without absorbable membrane; in the experimental group II, deproteinized bovine bone was grafted with absorbable membrane; in the experimental group III, beta-tricalcium phosphate was grafted without absorbable membrane; in the experimental group IV, beta-tricalcium phosphate was grafted with absorbable membrane. The animals were sacrificed after 3 weeks and 6 weeks respectively, and histologic and histomorphometric evaluations were performed. Results: Compare to the control groups, the experimental groups showed more newly formed bone. Between the experimental groups, beta-tricalcium phosphate showed more resorption than deproteinized bovine bone. Stabilization of grafted material and interception of the soft tissue invasion was observed in the specimen treated with membrane. There was no statistical difference between the experimental group I, III and experimental group II, IV classified by graft material, but statistically significant increase in the amount of newly formed bone was observed in the experimental group I, II and II, IV classified by the use of membrane (P<0.05). Conclusion: Both beta-tricalcium phosphate and deproteinized bovine bone showed similar osteoconductibility, but beta-tricalcium phosphate is thought to be closer to ideal synthetic graft material because it showed higher resorption rate in vivo. Increased new bone formation can be expected in bone graft with use of membrane.

THE EFFECT OF BONE MORPHOGENETIC PROTEIN 2(BMP2) ON THE GROWTH OF CRANIAL BONE AND EARLY MORPHOGENESIS OF THE CRANIAL SUTURE (Bone Morphogenetic Protein 2 가 두개골 성장 및 두개봉합부의 초기형태발생에 미치는 영향)

  • Jung, Hae-Kyung;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.217-228
    • /
    • 2003
  • Co-ordinate growth of the brain and skull is achieved through a series of tissue interactions between the developing brain, the growing bones of the skull and the sutures that unite the bones. Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of these interactions. Bmp2, one of bone morphogenetic proteins (Bmps), is involved in the regulation of the shapes of individual bones and the relative proportions of the skeleton. Mutations in the homeobox gene Msx2, known as a downstream gene of Bmp, cause Boston-type human craniosynostosis. The phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. These facts suggest important roles of Bmp2, Msx2 and Dlx5 genes in the cranial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of Bmp2(E15-18), Msx2 and Dlx5 genes in the developing sagittal suture of calvaria during the embryonic stage. Bmp2 mRNA was intensely expressed in the osteogenic fronts and also at the low level in the periosteum of parietal bones during embryonic stage, Msx2 mRNA was intensely expressed in the sutural mesenchyme and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and parietal bones. To further examine the role of Bmp signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of Bmp2-soaked beads onto the osteogenic fronts after 48 hours organ culture resulted in the increase of the tissue thickness and cell number around Bmp2 beads, compared to BSA control beads. In addition Bmp2 induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of FGF2 did not induce the expression of Msx2 and Dlx5. Taken together, these data indicate that Bmp2 signaling molecule has a important role in regulating the cranial bone growth and early morphogenesis of cranial suture. We also suggest that Bmp signaling is involved in all the stages of osteogenesis of cranial bones and the maintenance of cranial suture by regulating Msx2 and Dlx5 genes, and that Msx2 and Dlx5 genes are specific transcription factors of Bmp signaling pathway.

  • PDF

THE BONE REGENERATIVE EFFECTS OF PARADIOXANONE ON THE CALVARIAL CRITICAL SIZE DEFECT IN SPRAGUE DAWLEY RATS (백서 두개골 실험적 결손부에서 Para-Dioxanone 차단막의 골조직 재생 효과)

  • Kwon, Suk-Hoon;Suk, Hun-Joo;Kim, Chong-Kwan;Jeong, Han-Sung;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.61-77
    • /
    • 2003
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. Bone graft & guided tissue are being used for the regeneration of destroyed periodontium these days. Non-resorbable membranes were used for Guided tissue regeneration in early days, however more researches are focused on resorbable membranes these days. The aim of this study is to evaluate the osteogenesis of paradioxanone membrane on the calvarial critical size defect in Sprague Dawley rats. An 8 mm diameter surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into three groups: Untreated control group, Biomesh(R) group and paradioxanone group. The animals were sacrificed at 4, 8 and 12 weeks after surgical procedure. The specimens were examined by histologic, histomorphometric analyses. The results are as follows: 1. In histological view on Biomesh(R), no visible signs of resorption was observed at 4 weeks but progressive resorption was observed at 8 weeks through 12 weeks. Paradioxanone membrane expanded at 4 weeks, and rapid resorption was observed at 8 weeks. In both the membranes, inflammatory cells were observed around them. Inflammatory cells decreased with time but were still present at 12 weeks. More inflammatory cells were observed in paradioxanone membranes than in Biomesh(R) membrane. 2. The area of newly formed bone in the defects were 0.001${\pm}$0.001, 0.006${\pm}$0.005, 0.002${\pm}$0.003 at the 4 weeks, 0.021${\pm}$0.020, 0.133${\pm}$0.073, 0.118${\pm}$0.070 at the 8 weeks and 0.163${\pm}$0.067, 0.500${\pm}$0.197, 0.487${\pm}$0.214 at the 12 weeks in the control group, Biomesh(R) group and experimental group respectively. Compared to the control group, Biomesh(R) group displayed significant differences at 4,8, and 12 weeks and the paradioxanone group at 8 and 12 weeks.(P<0.05)

The Effects of the Mixture of Fetal Bovine Serum and Poly-glycolic acid in Rabbit Calvarial Model (Poly-glycolic Acid(PGA)와 우태아 혈청(Fetal bovine serum, FBS)의 혼합물이 가토에서 골형성에 미치는 영향)

  • Sung, Yong Duck;Kim, Yong Ha;Moon, Young Mi;Kim, Kap Joong;Kim, Yeon Jung;Choi, Sik Young
    • Archives of Plastic Surgery
    • /
    • v.34 no.3
    • /
    • pp.298-304
    • /
    • 2007
  • Purpose: This study was undertaken to investigate the osteogenic induction potential of PGA & FBS mixture on a calvarial defect in the rabbit. Methods: Twenty New zealand white rabbit, weighing from 3.5-4kg were allocated into each of the three groups. Four 8 mm sized bone defects were made on the parietal bone by drilling. In group I, the bony defects were implanted with $50{\mu}m$ thickness film containing mixture of PGA and FBS. In group II, with PGA only film, & in group III, the bony defects were left with no implants. Results were evaluated by using morphologic change, radiographic study, biochemical study and histologic examination at 1 week (group I n=7, group II n=7, group III n=14), 2 weeks (group I n=6, group II n=6, group III n=12) and 3 weeks (group I n=7, group II n=7, group III n=14) following implantation. Results: In the morphologic & radiographic study, the formation and corticalization of callus were observed earlier in group I than in groups II and III (p < 0.05). In histological examination, group I showed more abundant and faster new bone formation than in group II and III. In biochemical analysis, group I displayed more activity than in group II and III. Group I also showed more abundant osteopontin, osteocalcin than groups II and III. Conclusion: In conclusion, the results demonstrate that the mixture of PGA and FBS has an effect on osteoblastic formation in the rabbit model. It is considered that further evaluation of long term results on resorption, immunologic tissue reaction and response of applied mixture in the human model will be needed.

Study of chitosan's effects on periodontal tissue regeneration: a meta-analysis of the histomorphometry (키토산의 치주조직 재생력에 대한 연구의 고찰: 조직계측학적 메타분석)

  • Yang, Jin-Hyuk;Chae, Gyung-Joon;Yun, Jeong-Ho;Jung, Ui-Won;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • Purpose: Chitosan & chitosan derivative(eg. membrane) have been studied in periodontal regeneration, and recently many studies of chitosan have reported good results. If chitosan's effects on periodontal regeneration are enhanced, we can use chitosan in many clinical and experimental fields. For this purpose, this study reviewed available literatures, evaluated comparable experimental models. Materials and Methods: Ten in vivo studies reporting chitosan's effects on periodontal tissue regeneration have been selected by use of the 'Pubmed' and hand searching. Results: 1. In Sprague Dawley rat calvarial defect models, amount of newly formed bone in defects showed significant differences between chitosan/chitosan-carrier/chitosan-membrane groups and control groups. 2. In beagle canine 1-wall intrabony defect models, amount of new cementum and new bone showed significant differences between chitosan/chitosan-membrane groups and control groups. The mean values of the above experimental groups were greater than the control groups. Conclusion: The results of this study have demonstrated that periodontal regeneration procedure using chitosan have beneficial effects, which will be substitute for various periodontal regenerative treatment area. One step forward in manufacturing process of chitosan membrane and in use in combination with other effective materials(eg. bone graft material or carrier) may bring us many chances of common use of chitosan in various periodontal area.

THE EFFECT OF PRP ON THE BONE REGENERATION OF ${\beta}-TCP$ GRAFTED IN RABBIT CRANIAL BONE DEFECT (가토 두개골 결손부에 이식된 ${\beta}-TCP$의 골치유 과정에서 PRP의 효과에 관한 연구)

  • Lee, Soung-Hoon;Hwang, Kyung-Gyun;Park, Chang-Joo;Lim, Byung-Sup;Cho, Jung-Yeon;Paik, Seung-Sam;Shim, Kwang-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.417-433
    • /
    • 2006
  • Purpose : Platelet rich plasma (PRP) is an autologous material with many growth factors, such as BMPs, PDGF, $TGF-{\beta}_1$, $TGF-{\beta}_2$, VEGF, and IGF, facilitating bone healing process. The prominent osteoconductive activity and the biodegradable nature of beta-tricalciumphosphate (${\beta}-TCP$) for bone grafts in animal experiments have been reported. The purpose of this study was to evaluate the effect of PRP on the osteogenesis of ${\beta}-TCP$. Materials & Methods : Two artificial calvarial bone defects were made in 32 rabbits which were divided into 2 groups. In one group of 16 rabbits, autogenous bone / ${\beta}-TCP$ was grafted on each side of cranial bone defect. In the other group of 16 rabbits, mixture of ${\beta}-TCP$ and PRP / PRP alone was grafted on each side of the cranial bone defect. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery. The specimens were harvested and examined histologically and immunohistochemically by the expression of BMP2/4/7, PDGF, VEGF and $TGF-{\beta}_1$. Results : The mean volume of new bone formation was significantly higher at 4, 8, 12 weeks in autogenous graft than that in ${\beta}-TCP$. The BMP2/4 expression was significantly higher at 4 weeks in autogenous bone graft and at 4 weeks in mixture of ${\beta}-TCP$ and PRP and at 12 weeks in ${\beta}-TCP$. The expression of BMP7, PDGF, VEGF and $TGF-{\beta}_1$ showed no significant difference in autogenous, ${\beta}-TCP$, mixture of ${\beta}-TCP$ and PRP, and PRP alone during grafted bone regeneration. Conclusion : The results showed that PRP had no additional value in promoting healing process of ${\beta}-TCP$ grafts.

The Effect of Bioresorbable Membrane on the Bone Regeneration of Streptozotocin Induced Diabetic Rats (스트렙토조토신 유도 당뇨백서의 골조직 재생에 흡수성 차폐막이 미치는 영향)

  • Yang, Byung-Kun;Lee, Hak-Churl;Lee, Ji-Young;Son, Kang-Bae;Seol, Yang-Jo;Lee, Sang-Cheol;Kye, Seung-Beom;Chung, Chong-Pyoung;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.287-305
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of bioresorbable membranes in guided bone regeneration of streptozotocin induced diabetic rats. 50 Sprague-Dawley rats were randomly categorized into 4 groups: Group 1 & 2 had 10 normal rats each and group 3 & 4 included 15 streptozotocin induced diabetic rats each. Defect measuring 7mm in diameter was formed on every rat calvarium. No membrane was used in groups 1 & 3 and membranes were used in groups 2 & 4. The rates were sacrificed at 2 and 4 weeks after defect formation. Routine histological specimens were prepared. Masson-trichrome and HE stain were done before light microscopy. Guided regenerative potential was evaluated by measuring the amount of new bone formation in the calvarial defect by histomorphometry. Following results were obtained. 1. New bone formation in the diabetic groups was significantly less that than in the normal groups regardless of membrane use(p<0.05). 2. In the comparison of new bone formation in the normal groups, membrane group showed significantly more bone formation(p<0.1). 3. When the amount of new bone formation was compared in the diabetic groups, more bone was formed in the membrane groups but the difference was not statistically significant.4. In the normal groups the amount of new bone formation was significantly greater at 4 weeks compared to that at2 weeks(p<0.05) but amount of bone regeneration at 4 weeks was not significantly greater than that at 2 weeks in both diabetic groups.

  • PDF

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.