Acknowledgement
This study was supported by a faculty research grant of Yonsei University College of Dentistry for 2021 (6-2021-0020).
References
- Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, et al. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020;8:3574-600. https://doi.org/10.1039/D0BM00157K
- Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-79. https://doi.org/10.1021/cr000108x
- Serafim A, Tucureanu C, Petre DG, Dragusin DM, Salageanu A, Van Vlierberghe S, et al. One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New J Chem 2014;38:3112-26. https://doi.org/10.1039/C4NJ00161C
- Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015;73:254-71. https://doi.org/10.1016/j.biomaterials.2015.08.045
- Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 2010;16:371-83. https://doi.org/10.1089/ten.teb.2009.0639
- Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012;41:2193-221. https://doi.org/10.1039/C1CS15203C
- McBeth C, Lauer J, Ottersbach M, Campbell J, Sharon A, Sauer-Budge AF. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 2017;9:015009.
- Rahali K, Ben Messaoud G, Kahn CJ, Sanchez-Gonzalez L, Kaci M, Cleymand F, et al. Synthesis and characterization of nanofunctionalized gelatin methacrylate hydrogels. Int J Mol Sci 2017;18:2675.
- Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, et al. Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep 2019;15:664-79. https://doi.org/10.1007/s12015-019-09893-4
- Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 2000;1:31-8. https://doi.org/10.1021/bm990017d
- Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010;31:1158-70. https://doi.org/10.1016/j.biomaterials.2009.10.040
- Wang N, Ma M, Luo Y, Liu TZ, Zhou P, Qi SC, et al. Mesoporous silica nanoparticles-reinforced hydrogel scaffold together with pinacidil loading to improve stem cell adhesion. Chemnanomat 2018;4:631-41. https://doi.org/10.1002/cnma.201800026
- Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle-hydrogel complex. J Mater Chem B Mater Biol Med 2014;2:1584-93. https://doi.org/10.1039/C3TB21246G
- Zhang Y, Sun M, Liu T, Hou M, Yang H. Effect of different additives on the mechanical properties of gelatin methacryloyl hydrogel: a meta-analysis. ACS Omega 2021;6:9112-28. https://doi.org/10.1021/acsomega.1c00244
- Noh I, Kim N, Tran HN, Lee J, Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res 2019;23:3.
- Bhattacharyya A, Janarthanan G, Kim T, Taheri S, Shin J, Kim J, et al. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res 2022;26:54.
- Park JY, Yang C, Jung IH, Lim HC, Lee JS, Jung UW, et al. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds. Biomater Res 2015;19:7.
- Hong I, Khalid AW, Pae HC, Cha JK, Lee JS, Paik JW, et al. Distinctive bone regeneration of calvarial defects using biphasic calcium phosphate supplemented ultraviolet-crosslinked collagen membrane. J Periodontal Implant Sci 2019;50:14-27. https://doi.org/10.5051/jpis.2020.50.1.14
- Mora-Boza A, Lopez-Donaire ML. Preparation of polymeric and composite scaffolds by 3D bioprinting. Adv Exp Med Biol 2018;1058:221-45. https://doi.org/10.1007/978-3-319-76711-6_10
- Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 2017;45:23-44. https://doi.org/10.1007/s10439-016-1678-3
- Heltmann-Meyer S, Steiner D, Muller C, Schneidereit D, Friedrich O, Salehi S, et al. Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo. Biomed Mater 2021;16.
- Cha JK, Jung UW, Thoma DS, Hammerle CH, Jung RE. Osteogenic efficacy of BMP-2 mixed with hydrogel and bone substitute in peri-implant dehiscence defects in dogs: 16 weeks of healing. Clin Oral Implants Res 2018;29:300-8. https://doi.org/10.1111/clr.13117
- Park JI, Yang C, Kim YT, Kim MS, Lee JS, Choi SH, et al. Space maintenance using crosslinked collagenated porcine bone grafted without a barrier membrane in one-wall intrabony defects. J Biomed Mater Res B Appl Biomater 2014;102:1454-61. https://doi.org/10.1002/jbm.b.33124
- Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 2010;21:567-76. https://doi.org/10.1111/j.1600-0501.2010.01922.x
- Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep 2019;9:6863.
- Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel) 2018;5:55.
- Elkhoury K, Russell CS, Sanchez-Gonzalez L, Mostafavi A, Williams TJ, Kahn C, et al. Soft-nanoparticle functionalization of natural hydrogels for tissue engineering applications. Adv Healthc Mater 2019;8:e1900506.
- Xing W, Tang Y. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Mater Sci 2022;4:83-96. https://doi.org/10.1016/j.nanoms.2021.07.004
- Dannert C, Stokke BT, Dias RS. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers (Basel) 2019;11:275.
- Dong Z, Yuan Q, Huang K, Xu W, Liu G, Gu Z. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Advances 2019;9:17737-44. https://doi.org/10.1039/C9RA02695A
- Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif Cells Nanomed Biotechnol 2018;46:1799-808.
- Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7. https://doi.org/10.5051/jpis.2010.40.4.180