• Title/Summary/Keyword: calmodulin promoter

Search Result 9, Processing Time 0.025 seconds

Tissue Specific Expression of Wound-Inducible RCaM-2 Promoter in Transgenic Tobacco Plants (상처에 의해서 유도되는 벼 calmodulin promoter의 transgenic 담배에서조직 특이적 발현)

  • Choi Young Ju
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.176-181
    • /
    • 2005
  • To study calmodulin (CaM) gene expression and its regulation, rice CaM promoter (RCaM-2) was isolated and fused to $\beta-glucuronidase$ (GUS), reporter gene. X-Glue staining patterns revealed that GUS localization is high in meristemic tissues such as the stem apex, stolen tip, and vascular regions. GUS staining in the transverse sections of stem and petiole was restricted to the inside of the vascular system, and cortex and epidermis located outside of the vascular system usually did not show GUS staining even a plant that expressed strong activity. GUS activity was found to be tissue specific expressed and exhibited a dramatic transient increase in response to wounding. These results suggest that the 5'-flanking region of RCaM gene regulates wound-inducible expression.

Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L.

  • Phean-o-pas, Srivilai;Limpaseni, Tipaporn;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.771-777
    • /
    • 2008
  • Calmodulin (CaM) proteins, members of the EF-hand family of $Ca^{2+}$-binding proteins, represent important relays in plant calcium signals. Here, OsCam1-1 was isolated by PCR amplification from the rice genome. The gene contains an ORF of 450 base pairs with a single intron at the same position found in other plant Cam genes. A promoter region with a TATA box at position-26 was predicted and fused to a gus reporter gene, and this construct was used to produce transgenic rice by Agrobacterium-mediated transformation. GUS activity was observed in all organs examined and throughout tissues in cross-sections, but activity was strongest in the vascular bundles of leaves and the vascular cylinders of roots. To examine the properties of OsCaM1-1, the encoding cDNA was expressed in Escherichia coli. The electrophoretic mobility shift when incubated with $Ca^{2+}$ indicates that recombinant OsCaM1-1 is a functional $Ca^{2+}$-binding protein. In addition, OsCaM1-1 bound the CaMKII target peptide confirming its likely functionality as a calmodulin.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum (대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정)

  • Lee, Hyo-Jung;Baek, Dong-Won;Lee, Ok-Sun;Lee, Ji-Young;Kim, Dong-Giun;Chung, Woo-Sik;Yun, Jae-Gil;Lee, Sin-Woo;Kwak, Sang-Soo;Nam, Jae-Seung;Kim, Doh-Hoon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

The phosphoinositide-specific phospholipase C gene, MPLCl, of Magnaporthe grisea is required for fungal development and plant colonization

  • Park, Hee-Sool;Lee, Yong-Hwan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.84.1-84
    • /
    • 2003
  • Magnaporthe grisea, the casual agent of rice blast, forms an appressorium to penetrate its host. Much has been learned about environmental cues and signal transduction pathways, especially those involving CAMP and MAP kinases, on appressorium formation during the last decade. More recently, pharmacological data suggest that calcium/calmodulin-dependent signaling system is involved in its appressorium formation. To determine the role of phosphoinositide-specific phospholipase C (PI-PLC) on appressorium formation, a gene (WPLCl) encoding PI-PLC was cloned and characterized from M. grisea strain 70-15. Sequence analysis showed that MPLCl has alt five conserved domains present in other phospholipase C genes from several filamentous fungi and mammals. Null mutants (mplcl) generated by targeted gene disruption exhibited pleiotropic effects on conidial morphology, appressorium formation, fertility and pathogenicity. mplcl mutants developed nonfunctional appressoria and are also defective in infectious growth in host tissues. Defects in appressorium formation and pathogenicity in mplcl mutants were complemented by a mouse PLCdelta-1 cDNA under the control of the MPLCl promoter. These results suggest that cellular signaling mediated by MPLCl plays crucial and diverse roles in development and pathogenicity of M. grisea, and functional conservation between fungal and mammalian Pl-PLCs.

  • PDF