Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0144

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels  

Nguyen, Lan Phuong (Department of Biomedical Sciences, Korea University College of Medicine)
Nguyen, Huong Thi (Department of Biomedical Sciences, Korea University College of Medicine)
Yong, Hyo Jeong (Department of Biomedical Sciences, Korea University College of Medicine)
Reyes-Alcaraz, Arfaxad (College of Pharmacy, University of Houston)
Lee, Yoo-Na (Department of Biomedical Sciences, Korea University College of Medicine)
Park, Hee-Kyung (Department of Biomedical Sciences, Korea University College of Medicine)
Na, Yun Hee (Department of Biomedical Sciences, Korea University College of Medicine)
Lee, Cheol Soon (Department of Biomedical Sciences, Korea University College of Medicine)
Ham, Byung-Joo (Department of Psychiatry, Korea University College of Medicine)
Seong, Jae Young (Department of Biomedical Sciences, Korea University College of Medicine)
Hwang, Jong-Ik (Department of Biomedical Sciences, Korea University College of Medicine)
Abstract
Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.
Keywords
calmodulin; cytosolic $Ca^{2+}$ sensor; internal ribosome entry site; myosin light chainC kinase 1/2; NanoBiT assay;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hothersall, J.D., Brown, A.J., Dale, I., and Rawlins, P. (2016). Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov. Today 21, 90-96.   DOI
2 Kanazawa, T., Misawa, K., Misawa, Y., Uehara, T., Fukushima, H., Kusaka, G., Maruta, M., and Carey, T.E. (2015). G-protein-coupled receptors: next generation therapeutic targets in head and neck cancer? Toxins (Basel) 7, 2959-2984.   DOI
3 Luo, J., Zhu, Y., Zhu, M.X., and Hu, H. (2011). Cell-based calcium assay for medium to high throughput screening of TRP channel functions using FlexStation 3. J. Vis. Exp. (54), 3149.
4 Ly, L.D., Ly, D.D., Nguyen, N.T., Kim, J.H., Yoo, H., Chung, J., Lee, M.S., Cha, S.K., and Park, K.S. (2020). Mitochondrial Ca(2+) uptake relieves palmitate-induced cytosolic Ca(2+) overload in MIN6 cells. Mol. Cells 43, 66-75.   DOI
5 Ma, Q., Ye, L., Liu, H., Shi, Y., and Zhou, N. (2017). An overview of Ca(2+) mobilization assays in GPCR drug discovery. Expert Opin. Drug Discov. 12, 511-523.   DOI
6 Mank, M. and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem. Rev. 108, 1550-1564.   DOI
7 McCombs, J.E. and Palmer, A.E. (2008). Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152-159.   DOI
8 Monteith, G.R. and Bird, G.S. (2005). Techniques: high-throughput measurement of intracellular Ca(2+) -- back to basics. Trends Pharmacol. Sci. 26, 218-223.   DOI
9 Nagai, T., Horikawa, K., Saito, K., and Matsuda, T. (2014). Genetically encoded Ca(2+) indicators; expanded affinity range, color hue and compatibility with optogenetics. Front. Mol. Neurosci. 7, 90.
10 Niedernberg, A., Tunaru, S., Blaukat, A., Harris, B., and Kostenis, E. (2003). Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J. Biomol. Screen. 8, 500-510.   DOI
11 Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W., and Lechleiter, J.D. (2008). Chemical calcium indicators. Methods 46, 143-151.   DOI
12 Perez Koldenkova, V. and Nagai, T. (2013). Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim. Biophys. Acta 1833, 1787-1797.   DOI
13 Qian, Y., Rancic, V., Wu, J., Ballanyi, K., and Campbell, R.E. (2019). A bioluminescent Ca(2+) indicator based on a topological variant of GCaMP6s. Chembiochem 20, 516-520.   DOI
14 Rhodes, D.R., Ateeq, B., Cao, Q., Tomlins, S.A., Mehra, R., Laxman, B., Kalyana-Sundaram, S., Lonigro, R.J., Helgeson, B.E., Bhojani, M.S., et al. (2009). AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc. Natl. Acad. Sci. U. S. A. 106, 10284-10289.   DOI
15 Strasser, A., Wittmann, H.J., and Seifert, R. (2017). Binding kinetics and pathways of ligands to GPCRs. Trends Pharmacol. Sci. 38, 717-732.   DOI
16 Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875-881.   DOI
17 Tsien, R.Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-2404.   DOI
18 Varghese, E., Samuel, S.M., Sadiq, Z., Kubatka, P., Liskova, A., Benacka, J., Pazinka, P., Kruzliak, P., and Busselberg, D. (2019). Anti-cancer agents in proliferation and cell death: the calcium connection. Int. J. Mol. Sci. 20, 3017.   DOI
19 Wacker, D., Stevens, R.C., and Roth, B.L. (2017). How ligands illuminate GPCR molecular pharmacology. Cell 170, 414-427.   DOI
20 Nowycky, M.C. and Thomas, A.P. (2002). Intracellular calcium signaling. J. Cell Sci. 115, 3715-3716.   DOI
21 Wu, S.C. and O'Connell, T.D. (2015). Nuclear compartmentalization of alpha1-adrenergic receptor signaling in adult cardiac myocytes. J. Cardiovasc. Pharmacol. 65, 91-100.   DOI
22 Yang, J., Cumberbatch, D., Centanni, S., Shi, S.Q., Winder, D., Webb, D., and Johnson, C.H. (2016). Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca(++) sensing. Nat. Commun. 7, 13268.   DOI
23 Yang, Y., Liu, N., He, Y., Liu, Y., Ge, L., Zou, L., Song, S., Xiong, W., and Liu, X. (2018). Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat. Commun. 9, 1504.   DOI
24 Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., Oshimura, M., Noguchi, T., Niwa, K., Ohmiya, Y., et al. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. J. Biotechnol. 194, 115-123.   DOI
25 Zhang, H.M., Li, L., Papadopoulou, N., Hodgson, G., Evans, E., Galbraith, M., Dear, M., Vougier, S., Saxton, J., and Shaw, P.E. (2008). Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res. 36, 2594-2607.   DOI
26 Zhu, T., Fang, L.Y., and Xie, X. (2008). Development of a universal high-throughput calcium assay for G-protein- coupled receptors with promiscuous G-protein Galpha15/16. Acta Pharmacol. Sin. 29, 507-516.   DOI
27 Wu, N., Nishioka, W.K., Derecki, N.C., and Maher, M.P. (2019). High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci. Rep. 9, 12692.   DOI
28 Cho, J.H., Swanson, C.J., Chen, J., Li, A., Lippert, L.G., Boye, S.E., Rose, K., Sivaramakrishnan, S., Chuong, C.M., and Chow, R.H. (2017). The GCaMP-R family of genetically encoded ratiometric calcium indicators. ACS Chem. Biol. 12, 1066-1074.   DOI
29 Bluthgen, N., van Bentum, M., Merz, B., Kuhl, D., and Hermey, G. (2017). Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci. Rep. 7, 45101.   DOI
30 Charlton, S.J. and Vauquelin, G. (2010). Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br. J. Pharmacol. 161, 1250-1265.   DOI
31 Conklin, B.R., Farfel, Z., Lustig, K.D., Julius, D., and Bourne, H.R. (1993). Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363, 274-276.   DOI
32 Cui, C., Merritt, R., Fu, L., and Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7, 3-17.   DOI
33 Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., Butler, B.L., Binkowski, B.F., Machleidt, T., Kirkland, T.A., et al. (2016). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400-408.   DOI
34 Farhana, I., Hossain, M.N., Suzuki, K., Matsuda, T., and Nagai, T. (2019) . Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca(2+) imaging. ACS Sens. 4, 1825-1834.   DOI
35 Gooz, M., Gooz, P., Luttrell, L.M., and Raymond, J.R. (2006). 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J. Biol. Chem. 281, 21004-21012.   DOI
36 Grundmann, M. and Kostenis, E. (2017). Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol. Sci. 38, 1110-1124.   DOI
37 Guerrero-Hernandez, A. and Verkhratsky, A. (2014). Calcium signalling in diabetes. Cell Calcium 56, 297-301.   DOI
38 Hardingham, G.E., Chawla, S., Johnson, C.M., and Bading, H. (1997). Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260-265.   DOI