DOI QR코드

DOI QR Code

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum

대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정

  • Lee, Hyo-Jung (Division of Applied Life Science, Gyeongsang National University) ;
  • Baek, Dong-Won (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Ok-Sun (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Ji-Young (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Dong-Giun (Division of Applied Life Science, Gyeongsang National University) ;
  • Chung, Woo-Sik (Division of Applied Life Science, Gyeongsang National University) ;
  • Yun, Jae-Gil (College of Life Science and Natural Resources, Jinju National University) ;
  • Lee, Sin-Woo (College of Life Science and Natural Resources, Jinju National University) ;
  • Kwak, Sang-Soo (Environmental Biotechnology, Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Nam, Jae-Seung (Faculty of Molecular Biotechnology, Dong-A University) ;
  • Kim, Doh-Hoon (Faculty of Molecular Biotechnology, Dong-A University) ;
  • Yun, Dae-Jin (Division of Applied Life Science, Gyeongsang National University)
  • 이효정 (경상대학교 대학원 응용생명과학부) ;
  • 백동원 (경상대학교 대학원 응용생명과학부) ;
  • 이옥선 (경상대학교 대학원 응용생명과학부) ;
  • 이지영 (경상대학교 대학원 응용생명과학부) ;
  • 김동균 (경상대학교 대학원 응용생명과학부) ;
  • 정우식 (경상대학교 대학원 응용생명과학부) ;
  • 윤재길 (진주산업대학교 생명자원과학대학 작물생명과학과) ;
  • 이신우 (진주산업대학교 생명자원과학대학 작물생명과학과) ;
  • 곽상수 (한국생명공학연구원 환경생명공학연구센터) ;
  • 남재성 (동아대학교 생명자원과학대학 분자생명공학부) ;
  • 김도훈 (동아대학교 생명자원과학대학 분자생명공학부) ;
  • 윤대진 (경상대학교 대학원 응용생명과학부)
  • Published : 2006.06.30

Abstract

The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.

농작물 생산에 있어서 병원균 침입에 의한 피해를 줄이는 것은 아주 중요한 과제이다. 식물은 스스로도 생체 방어 신호 전달 기작을 가지고 있지만 그 피해를 줄이는데 있어서 한계가 있다. 본 연구는 콩과 식물에서 분리한 식물생체방어 신호전달 유전자인 SCaM-5를 토마토에 형질전환하여 형질전환 식물체를 작성하고 병 저항성에 관한 실험을 수행한 것이다. SCaM-5 유전자가 형질전환 된 토마토에서는 pathogen-related(PR-5) 유전자를 항상 발현시킴으로서 계속적으로 식물 생체방어 신호기작을 활성 시킨다는 사실을 확인하였다. 또한, SCaM-5를 형질전환 시킨 토마토는 식물에 막대한 피해를 주는 중요한 곰팡이 (P. capsici와 F. oxysporm)와 bacteria (Pst DC3000)에 대하여 병 저항성을 가진다는 것을 검증하였다.

Keywords

References

  1. Bolognesi A, Polito L, Lubelli C, Barbieri L, Parente A, and Stirpe F (2002) Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. tissues. J. Biol. Chem. 277: 13709-13716 https://doi.org/10.1074/jbc.M111514200
  2. Chen Y, Vandenbussche F, Rouge P, Proost P, Peumans WJ and Van Damme EJ (2002) A complex fruit-specific type-2 ribosome-inactivating protein from elderberry (Sambucus nigra) is correctly processed and assembled in transgenic tobacco plants. Eur. J. Biochem. 269: 2897-2906 https://doi.org/10.1046/j.1432-1033.2002.02962.x
  3. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U and Vad K (1993) Plant chitinases. Plant Journal 3: 31-40 https://doi.org/10.1046/j.1365-313X.1993.t01-1-00999.x
  4. Florack DE and Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol. Biol. 26: 25-37 https://doi.org/10.1007/BF00039517
  5. Gao AG, Hakim SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J and Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol. 18: 1307-1310 https://doi.org/10.1038/82436
  6. Garcia-Olmedo F, Molina A, Alamillo JM and RodriguezPalenzuela P (1998) Plant defense peptides. Biopolymers 47: 479-491 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K
  7. Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY and Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA. 96: 766-71
  8. Hong JC, Nagao RT and Key JL (1987) Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J. Biol. Chem. 262: 8367-8376
  9. Harsh RB, Fry JE, Hoffmann NL, Eichholfz D, Rogers SG and Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229-1231 https://doi.org/10.1126/science.227.4691.1229
  10. Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han CD, Lee BL and Cho MJ (1998) Two hevein homologues isolated from the seeds of Pharbitis nil L. exhibit potent antifungal activity. Biochem. Biophys. Acta 1382: 80-90 https://doi.org/10.1016/S0167-4838(97)00148-9
  11. Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad D T, Karigar C, Chun HJ, Jeong BR, Kim DH, Nam J, Yun JG, Kwak SS, Cho MJ, Yun DJ (2003) Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62: 1073-1079 https://doi.org/10.1016/S0031-9422(02)00668-4
  12. Lehrer RI, Ganz T and Selsted ME (1991) Defensins: endogenous antibiotic peptides of animal cells. Cell 64: 229-230 https://doi.org/10.1016/0092-8674(91)90632-9
  13. Melchers LS, Sela Buurlage MB, Vloemans SA, Woloshuk CP, van Roekel JS, Peen J, Van den Elzen PJ and Cornelissen BJ (1993) Extra cellular targeting of the vacuolar tobacco proteins AP24. Chitinase and beta-1,3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583-593 https://doi.org/10.1007/BF00014542
  14. Murashige T and Skoog F (1962) A revised medium far rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Park CY, Heo WD, Yoo JH, Lee JH, Kim MC, Chun HJ, Moon BC, Kim IH, Park HC, Choi MS, Ok HM, Cheong MS, Lee SM, Kim HS, Lee KH, Lim CO, Chung WS and Cho MJ (2004) Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol Cells. 18: 207-13
  16. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC and Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT -1-like transcription factor. Plant Physiol 135: 2150-61 https://doi.org/10.1104/pp.104.041442