DOI QR코드

DOI QR Code

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato

애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가

  • Chun, Hyun-Jin (Divison of Agronomy & Medicinal Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Hyeong-Cheol (Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center) ;
  • Goo, Young-Min (Divison of Agronomy & Medicinal Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Tae-Won (Divison of Agronomy & Medicinal Resources, Gyeongnam National University of Science and Technology) ;
  • Cho, Kwang-Soo (Highland Agriculture center, National Institute of Crop Science, RDA) ;
  • Cho, Hyeon-Seol (Department of Physical Therapy, Gwangyang Health College) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center) ;
  • Chung, Woo-Sik (Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center) ;
  • Lee, Shin-Woo (Divison of Agronomy & Medicinal Resources, Gyeongnam National University of Science and Technology)
  • 전현진 (경남과학기술대학교 농학.한약자원학부) ;
  • 박형철 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 구영민 (경남과학기술대학교 농학.한약자원학부) ;
  • 김태원 (경남과학기술대학교 농학.한약자원학부) ;
  • 조광수 (국립식량과학원, 고령지농업연구센터) ;
  • 조현설 (광양보건대학 물리치료과) ;
  • 윤대진 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소) ;
  • 정우식 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소) ;
  • 이신우 (경남과학기술대학교 농학.한약자원학부)
  • Received : 2011.03.02
  • Accepted : 2011.03.12
  • Published : 2011.03.31

Abstract

Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

원예작물의 생육을 저하시키는 각종 병충해로 인한 과도한 농약과 화학비료의 사용은 환경오염뿐만 아니라 작물의 생산량에도 큰 영향을 미치고 있다. 식물생명공학기술을 이용하여 농약이나 화학비료 사용량을 획기적으로 줄일 수 있는 식물체의 개발, 즉 형질전환을 이용한 분자 육종기술은 병충해 내성 농작물을 개발하여 과도한 화학비료의 사용에 따르는 여러가지 문제점들을 극복할 수 있는 대안으로 대두되고 있다. 본 연구에서는 모델식물인 애기장대에서 분리한 식물생체방어 신호전달에 관련된 AtCBP63 유전자를 감자에 과발현시켰고, 이러한 형질 전환 감자에서 병저항성에 관여하는 유전자인 PR-2, PR-3, PR-5 유전자들의 발현이 증가되어 지속적으로 식물 방어 기작이 활성화되어 있음을 확인하였다. 또한, 감자에서 무름병 (soft rot disease)을 일으켜 막대한 피해를 유발하는 병원성 세균인 Erwinia carotovora subsp. Carotovora (Ecc)를 이용하여 AtCBP63 유전자를 과발현한 감자에 감염시켰을 때, 병 저항성이 증가한다는 사실을 검증하였다. 앞으로, 다양한 곰팡이 균에 대응하여 AtCBP63 유전자를 과발현한 감자에 저항성을 검증하고자 한다.

Keywords

References

  1. Agrios GN (1988) Plant pathology, 3rd edn. Academic Press, New York, pp 17-26
  2. Chin D and Means AR (2000) calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322-328 https://doi.org/10.1016/S0962-8924(00)01800-6
  3. Cho MJ, Vaghy PL, Kondo R, Lee SH, David JP, Rehl R, Heo WD and Johnson JD (1998) Reciprocal regulation of mammalian nitric oxide synthase and calcineurin by plant calmodulin isoforms. Biochemistry 37:15593-15597 https://doi.org/10.1021/bi981497g
  4. Dixon RA, Harrison MJ and Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32:479-501 https://doi.org/10.1146/annurev.py.32.090194.002403
  5. Dolmetsch RE, Lewis RS, Goodnow CC and Healy JI (1997) Differential activation of transcription factors induced by $Ca^{2+}$ response amplitude and duration. Nature 24:855-858
  6. Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY and Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 96:766-771 https://doi.org/10.1073/pnas.96.2.766
  7. Hoeflich KP and Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms Cell 108: 739-742 https://doi.org/10.1016/S0092-8674(02)00682-7
  8. Kim MC, Chung WS,Yun D-J and Cho MJ (2009a) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13-21 https://doi.org/10.1093/mp/ssn091
  9. Kim SH, Kang YH, Han HJ, Bae DW, Kim MC, Lim CO and Chung WS (2009b) Identification of another calmodulinbinding domain at the C-terminal region of AtCBP63. J Plant Biotechnol 36:53-58 https://doi.org/10.5010/JPB.2009.36.1.053
  10. Kondo R, Tikunova SB, Cho MJ and Johnson JD (1999) A point mutation in a plant calmodulin is responsible for its inhibition of nitric-oxide synthase. J Biol Chem 274:36213-36218 https://doi.org/10.1074/jbc.274.51.36213
  11. Lee SH, Johnson JD, Walsh MP, Van Lierop JE, Sutherland C, Xu A, Snedden WA, Kosk-kosicka D, Fromm H, Narayanan N and Cho MJ (2000) Different regulation of $Ca^{2+}$/calmodulindependent enzymes by plant calmodulin isoforms and free $Ca^{2+}$ concentration. Biochem J 350:299-306 https://doi.org/10.1042/0264-6021:3500299
  12. Lee SH, Kim JC, Lee MS, Heo WD, Seo HY, Yoon HW, Hong JC, Lee SY, Bahk JD, Hwang I, Cho MJ (1995) Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem 270:21806-21812 https://doi.org/10.1074/jbc.270.37.21806
  13. Ling V, Perera I and Zielinski RE (1991) Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol 96:1196-1202 https://doi.org/10.1104/pp.96.4.1196
  14. Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Park CY, Heo WD, Yoo JH, Lee JH, Kim MC, Chun HJ, Moon BC, Kim IH, Park HC, Choi MS, Ok HM, Cheong MS, Lee SM, Kim HS, Lee KH, Lim CO, Chung WS and Cho MJ (2004) Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol. Cells 18:207-213
  16. Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, Kim MC, Chung WS, Kim JC, Yoo JH, Koo YD, Koo SC, Lim CO, Lee SY and Cho MJ (2002) Characterization of a stamenspecific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50:59-69
  17. Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331-341 https://doi.org/10.1096/fasebj.11.5.9141499
  18. Sacks WR, Ferreira P, Hahlbrock K, Jabs T, Nürnberger T, Renelt A and Scheel D (1993) Elicitor recognition and intracellular signal transduction in plant defense. In: Advances in Molecular Genetics of Plant-Microbe Interactions. (Nester, E., ed.) Kluwer Academic publishers Dordrecht, Boston, London Vol 2:485-495
  19. Sjefke JHM, Florack DEA, Hoogendoorn C and Stiekema WJ (1995) Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered. Amer J Potato Research 72:437-445 https://doi.org/10.1007/BF02851677
  20. Snedden WA and Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35-66 https://doi.org/10.1046/j.1469-8137.2001.00154.x
  21. Takezawa D, Liu ZH, An G and Poovaiah BW (1995) Calmodulin gene family in potato: developmental and touch-induced expression of the mRNA encoding a novel isoform. Plant Mol Biol 27:693-703 https://doi.org/10.1007/BF00020223
  22. Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J. (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5 (2):e1000301 https://doi.org/10.1371/journal.ppat.1000301
  23. Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virusinduced cell death and wounding in tobacco plant. Eur J Biochem 268:3916-3929 https://doi.org/10.1046/j.1432-1327.2001.02301.x
  24. Yang T, Segal G, Abbo S, Feldman M and Fromm H (1996) Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet 252:684-694 https://doi.org/10.1007/BF02173974
  25. Yi JY, Seo HW, Yang MS, Robb EJ, Nazar RN and Lee SW (2004) Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta 220:165-171 https://doi.org/10.1007/s00425-004-1346-y
  26. Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS and Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697-3706 https://doi.org/10.1074/jbc.M408237200

Cited by

  1. Agronomic characteristics and field resistance to bacterial soft rot of transgenic potato overexpressing the soybean calmodulin 4 gene (SCaM4) vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.295
  2. Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique vol.35, pp.1, 2015, https://doi.org/10.7779/JKSNT.2015.35.1.1