• Title/Summary/Keyword: cable truss

Search Result 76, Processing Time 0.017 seconds

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

A Study on the Shape-Determination for the Unit-structure of Truss Stabilized by the Cable Tension (장력안정화 트러스의 단위구조 형상결정에 관한 연구)

  • 권택진;한상을;최옥훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.152-159
    • /
    • 1997
  • This unit - structure of truss stabilized by cable tension is composed of four truss member adding to a central post and eight cables, and is connected by hinge joints and is stabilized by cable tension. As this unit - structures itself is a statically closed and stabilize system individually, it can be employed to assemble a structure with a variety of configuration. In this paper, for determination the shape of the unit - structure of truss stabilized by the cable, characteristics such as the stabilized range of the various geometrical parameter about unit system and the relation of the best governing paramter is demonstrated, and the relation of the results is compared in the range for the stabilization of unit-structure.

  • PDF

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

A Multi-noded Cable Element Considering Sliding Effects (슬라이딩을 허용하는 다절점 케이블요소)

  • Kim, Moon Young;Lee, Jun Seok;Han, Man Yop;Kim, Sung Bo;Kim, Nak Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.449-457
    • /
    • 2005
  • A multi-noded cable element allowing sliding at its nodes without frictions was introduced in this paper, and its elastic stiffness matrix was derived. A two-node truss element was briefly summarized and extended to multi-node, cable-truss elements that keep their tension constant but are connected without frictions through several nodes. The element elastic stiffness matrix of the multi-node,cable-truss elements was consistently derived. The steel wales pre-stressed externally in the IPS system were chosen as numerical examples and analyzed under various loading conditions. The cable tensions calculated using the present element were compared with the results of the flexibility method and those using the two-node truss element, respectively.

Determination of the Boundary of Parameters for Stabilization of Truss Structures Stabilized by Cable Tension (장력안정트러스 구조물의 안정화를 위한 매개변수의 범위 결정에 관한 연구)

  • 권택진;한상을;최옥훈
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 1997
  • The charateristics of stabilization for stabilized truss unit-structures with cable and truss are investigated in this paper. This unit system is composed of a central post and eight cables, and is connected by hinge joints, and stabilized by self-equilibrated stress field. As this unit structure itself is a statically closed and stabilized system individually, it can be employed to assemble structures with various configurations. In this study, for stabilization of truss structures stabilized by cable tension, the structural concept of unit structures, the range of various geometrical parameters and the relationship of governing parameters about unit systems are explained.

  • PDF

Non-linear Dynamic Analysis of Cable Structures Using Elastic Catenary (탄성 현수선 요소를 이용한 케이블 구조물의 비선형 동적해석)

  • Hwang, Jin-Hong;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.167-172
    • /
    • 2005
  • In the dynamic analysis of cable structures, geometrical non-linearity due to the flexibility of cables must be considered efficiently. In this paper, formulation of tangent stiffness matrix of elastic catenary cable is derived by using relative nodal displacements, self-weight and unstressed cable length. Free vibration analysis of simply supported cable using elastic catenary cable elements is conducted and compared with that using truss elements. The result shows that elastic catenary cable elements are more compatible than truss elements in the case of analysis of cable structures. Furthermore, the characteristic of dynamic behaviors of cable structures by temporary unstability phenomenon is confirmed.

  • PDF

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

Non-linear Dynamic Analysis of Cable Structures Using Elastic Catenary (탄성 현수선 요소를 이용한 케이블 구조물의 비선형 동적해석)

  • Hwang Jin-Hong;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.473-480
    • /
    • 2005
  • Geometrical non-linearity due to the flexibility of cables must be considered efficiently in the dynamic analysis of cable structures. In this paper, formulation of tangent stiffness matrix of elastic catenary cable is derived by using relative nodal displacements, self-weight and unstressed cable length. Free vibration analysis of simply supported cable using elastic catenary cable elements is conducted and compared with that using truss elements. The result shows that elastic catenary cable elements are more compatible than truss elements in the case of analysis of cable structures. Furthermore, the characteristic of dynamic behaviors of cable structures by temporary unstability phenomenon is confirmed.

  • PDF

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas (구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Kim, Hyo-Tae;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.68-76
    • /
    • 2022
  • The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.