• Title/Summary/Keyword: by-product gas

Search Result 798, Processing Time 0.026 seconds

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Hydrogen Purification by the Four-Bed Pressure Swing Adsorption Process from Steam Methane Reforming Off-Gas (4탑 PSA 공정의 의한 SMR off-gas로부터 수소 정제)

  • Yang, Se-Il;Park, Ju-Yong;Jang, Seong-Cheol;Kim, Sung-Hyun;Choi, Dae-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.383-386
    • /
    • 2008
  • The four-bed PSA process using a layered bed of activated carbon and zeolite 5A was studied to produce a high purity hydrogen product from SMR off-gas. At a desired product purity (99.999%+), the recovery increased with decreasing the linear velocity. However, the difference of the increasing of the recovery became smaller with the decreasing of the linear velocity and then was similar from below the linear velocity 3.9 cm/s. When the adsorbents, the feed gas composition, and the operating conditions are given, the residence time is mainly a function for design of the PSA bed size. The minimum residence time exists to obtain the maximum recovery at desired product purity.

  • PDF

Synthesized Oil Manufacturing Technology from Natural Gas, GTL (천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids))

  • Bae, Ji-Han;Lee, Won-Su;Lee, Heoung-Yeoun;Kim, Yong-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • The GTL(Gas to Liquids) technology, manufacturing synthesized oil from natural gas, had been developed about 1920 for the military purpose by Fischer and Tropsch, German scientists. And 1960, Sasol company had started commercializing the FT(Fischer-Tropsch) synthesis technology, for the transport fuel in South Africa. Until a recent date, the commercialization of GTL technology had been delayed by low oil price. But concern about depletion of petroleum resources, and development in synthesizing technology lead to spotlight on the GTL businesses. Especially, Qatar, which has rich natural gas fields, aims at utilizing natural gas like conventional oil resources. Therefore, around this nation, GTL plants construction has been promoted. There are mainly 3 processes to make GTL products(Diesel, Naphtha, lube oil, etc) from natural gas. The first is synthesis gas generation unit reforming hydrogen and carbomonoxide from natural gas. The second is FT synthesis unit converting synthesized gas to polymeric chain-hydrocarbon. The third is product upgrading unit making oil products from the FT synthesized oil. There are quite a little sulfur, nitrogen, and aromatic compounds in GTL products. GTL product has environmental premium in discharging less harmful particles than refinery oil products from crude to the human body. In short, the GTL is a clean technology, easier transportation mean, and has higher stability comparing to LNG works.

  • PDF

Synthesis of Methane-rich Gases(Alternative Energy) by Thermochemical Gasification from Waste Municipal and Lignocellulosic Materials (목질 폐재와 가정용 쓰레기의 열-화학적 분해에 의한 고수율 메탄가스(대체연료)의 합성)

  • Lee, Byung-Guen;Lee, Sun-Haing
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.13-19
    • /
    • 1989
  • Two different quartz types of gasification reactor were used for pyrolysis and gasification of sawdust, ricestraw, ricehusk and municipal wastes which contain only cellulosics., operating at 1 atmospheric and vacuum pressure respectively. Also a stainless steel autoclave gasification reactor was used which is possible to use up to 100 atmospheric pressures and $800^{\circ}C$ of reaction temperature to complete pyrolysis and gasification reaction. The catalysts used in this reaction w- ere $K_2CO_3$, $Na_2CO_3$, Ni and Ni-$K_2CO_3$ as CO-Catalyst. The product gas mixtures were identified to be CO, $CO_2$, $C_3H_3$, $CH_4$ and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometry. The pressurized gasification reaction shows significant increase in terms of methane composition and yield of product gases, comparing with those from unpressurized gasification reactions. The total volume of product gas mixtures amounts to 1600-1800ml per1gof waste of waste lignocellulosics or municipal waste, and the metane content of the gas mixtures reached to 40%, when $800^{\circ}C$ of reaction temperature and 100 atmospheric pressures with Ni-$K_2CO_3$ as CO-catalyst in the pressurized gasification reaction were used. This results show that the product gas mixtures containing 40% of methane call be used for alternative enegy source.

  • PDF

Development of a Type 4 Composite Cylinder for Self-contained Breathing Apparatus (공기호흡기용 타입 4 복합재료 용기 개발)

  • Cho, Sung-min;Kim, Da-eun;Seong, Hye-jin;Ko, Young-kyu;Kim, Hong-chul;Lee, Kang-ok;Jo, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.1-6
    • /
    • 2019
  • Aluminum liners used in cylinders are hazardous for human health. In this study, we use a plastic PA liner inside cylinders to solve this problem. Plastic PA liners are widely used in the manufacturing industry in the production of food and beverage containers. We covered the aluminum boss with a plastic liner material and wound the composite fibers over the liner material. To reinforce the dome area, we used low strength / high elongation plastic liner. To predict the performance of the developed product, we conducted structural analyses utilizing the 3D laminated solid element. We verified the soundness of the product by testing the prototype.

Determination of an Inelastic Collision Cross Sections for C3F8 Molecule by Electron Swarm Method (전자군 방법에 의한 C3F8분자가스의 비탄성충돌단면적의 결정)

  • Jeon Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.301-306
    • /
    • 2006
  • The electron drift velocity W and the product of the longitudinal diffusion coefficient and the gas number density $ND_{L}$ in the $0.525\;\%$ and $5.05\;\%$ $C_{3}F_8-Ar$ mixtures were measured by using the double shutter drift tube with variable drift distance over the E/N range from 0.03 to 100 Td and gas pressure range from 1 to 915 torr. And we determined the electron collision cross sections set for the $C_{3}F_8$ molecule by STEP 1 of electron swarm method using a multi-term Boltzmann equation analysis. Our special attention in the present study was focused upon the vibrational excitation and new excitations cross sections of the $C_{3}F_8$ molecule.

Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation

  • Kondo, Makoto;Hirano, Yoshiaki;Ikai, Noriyuki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1571-1576
    • /
    • 2014
  • Nutritive values of green and black tea by-products and anti-nutritive activity of their tannins were evaluated in an in vitro rumen fermentation using various molecular weights of polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP) and polyvinyl polypyrrolidone as tannin-binding agents. Significant improvement in gas production by addition of PEG4000, 6000 and 20000 and PVP was observed only from black tea by-product, but not from green tea by-product. All tannin binding agents increased $NH_3$-N concentration from both green and black tea by-products in the fermentation medium, and the PEG6000 and 20000 showed relatively higher improvement in the $NH_3$-N concentration. The PEG6000 and 20000 also improved in vitro organic matter digestibility and metabolizable energy contents of both tea by-products. It was concluded that high molecular PEG would be suitable to assess the suppressive activity of tannins in tea by-products by in vitro fermentation. Higher responses to gas production and $NH_3$-N concentration from black tea by-product than green tea by-product due to PEG indicate that tannins in black tea by-product could suppress rumen fermentation more strongly than that in green tea by-product.

Gasification of Crude Glycerin for Liquid Fuel Production (액체연료 생산을 위한 폐글리세린의 가스화 기술 개발)

  • Yoon, Sang-Jun;Ra, Ho-Won;Lee, See-Hoon;Choi, Young-Chan;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.451-454
    • /
    • 2009
  • Production and application of biodiesel are expected to grow steadily in the coming years and thus output of its by-product, crude glycerin, will accordingly increase as well. In the present study, gasification of biodiesel by-product as a renewable energy was performed in an entrained flow gasifier to investigate the gasification performance with the operating conditions. Crude glycerin shows a high heating value of 6,000 kcal/kg and low ash and sulphur content. Gasification was conducted in a temperature range of $950\;{\sim}\;1500\;^{\circ}C$. The variation of syngas composition with excess air ratio of 0.17 ~ 0.7 for air or oxygen as a gasification agent was investigated. From the results, syngas heating value, carbon conversion and cold gas efficiency of more than $2500\;kcal/Nm^3$, 95% and 65% were achieved, respectively. The temperature dependency of syngas composition, carbon conversion, and cold gas efficiency shows a similar tendency to excess air ratio at the temperature corresponding to the excess air ratio. The $H_2/CO$ ratio of the product gas was varied from 1.25 to 0.7 with the excess air ratio and this gas composition was favorable for DME synthesis. The optimum excess air ratio for gasification of biodiesel by-product was evaluated to be an approximately 0.35 to 0.4. The present results indicate that crude glycerin can be utilized as a feedstock for gasification to make syngas.

  • PDF

Gas cooling for optimization of mold cooling (금형 냉각 최적화를 위한 기체 보조 냉각)

  • Lim, Dong-Wook;Kim, Ji-Hun;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Both injection and injection molding dies have evolved into advanced technology. Product quality is also evolving day after day. Therefore, the conditions of the injection mold and the injection conditions are becoming important. In order to improve the quality of the product, the Hardware part of the mold has developed as an advanced technology, and the Software part has also developed with advanced technology. This study deals with the cooling part, which is part of the hardware. In addition to fluid cooling, which is commonly used in the industry, by using gas cooling identify the phenomena that appear on the surface of the product and the critical point strain of the product to find the optimal cooling. Electronic parts and automobile parts whose surface condition is important, the cooling process is important to such a degree that they are divided with good products and defective products according to the cooling process at the time of injection. By controlling this important cooling and reducing the injection time with additional cooling, the product quality can be increased to the highest production efficiency. In addition, high efficiency can be achieved without additional investment costs. This study was conducted to apply these various advantages in the field.

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.