• Title/Summary/Keyword: bus converter

Search Result 176, Processing Time 0.026 seconds

넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터 (A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability)

  • 이바둘라예브 안바르;박성준
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

Bidirectional DC-DC Converter Based on Quasi-Sepic for Battery Charging System

  • Zhang, Hailong;Chen, Yafei;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • 한국산업융합학회 논문집
    • /
    • 제23권2_1호
    • /
    • pp.139-147
    • /
    • 2020
  • In order to satisfy the voltage levels of the low voltage battery side and high voltage DC bus, a high voltage gain with bidirectional operation is required. In this system, the cost effectiveness of the design is a critical factor; therefore, the system should be designed using a small number of components. This paper propose a novel bidirectional converter composed with a quasi-sepic and switched-indictor network. The proposed converter consists a small number of components with a high voltage gain ratio. Detailed analysis are made with respect to the operating mode, number of components, voltage and current ripple and efficiency. To verify performance of the proposed converter, simulation was performed is this paper. The simulation results are shown to verify the feasibility and performance of the proposed bidirectional converter.

다목적 실용위성 전력조절기 모듈화 구현을 위한 새로운 전원단 설계 및 해석 (A new power-stage design and analysis to modularize power regulator of the KOrea Multi-Purpose SATellite)

  • 박성우;이재승;이종인;윤정오
    • 한국산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.84-91
    • /
    • 2003
  • 다목적 실용위성(KOMPSAT) 시리즈는 버스전압이 배터리 전압과 동일하며, 전력조절기(power regulator)의 스위칭 듀티 값(duty-ratio)이 위성탑재 소프트웨어에 의해서 제어되는 소프트웨어 제어방식의 비 조절형 버스 시스템(unregulated bus system)을 사용한다. 본 논문에서는 이와 같은 소프트웨어 제어방식의 비 조절형 버스 시스템의 전력조절기 모듈화에 적용 가능한 새로운 전원단 회로를 제안하며, 제안된 전원단의 모드별 동작 특성을 해석한다. 다음으로 컨버터 병렬동작에서 발생할 수 있는 모듈간 전류 불균형(current unbalance)에 대한 제안된 전원단의 타당성을 검증하기 위해 제안된 전원단을 적용한 병렬모듈 컨버터의 prototype제작하여 모듈별 전류 분배(current sharing) 특성을 시뮬레이션 결과와 비교 검토한다.

  • PDF

Power Factor Correction of the Single-State AC/DC Converter with Low conduction Loss and High Efficiency

  • Ryu, Myung-Hyo;Choi, Byungcho;Kim, Heung-Geun;Cha, Young-Kil
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.281-286
    • /
    • 1998
  • This paper proposes a new single-stage, single-switch AC/DC converter based on the boost power factor correction (PFC) cell. The converter offers both high power factor and high efficiency. To reduce the dc voltage on the energy storage capacitor, the dc bus voltage feedback method was used. A 100W (5V/20A) prototype was built and tested to show the validity of the proposed converter.

  • PDF

대용량 병렬 양방향 컨버터를 이용한 배터리 충$\cdot$방전기 해석 (An Analysis of Battery Charger$\cdot$Dischrger using Parallel Connected Bi-directional Converter)

  • 최재동;안재황;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.773-776
    • /
    • 2002
  • The battery charger of spacecraft has two different modes of operation respectively. One is the bus voltage regulation mode and the other is the charge current regulation mode. And also the battery discharger provide the power during eclipse mode of spacecraft. In this study, a test model of the battery charger and discharger using hi-directional converter are designed and analyzed. These Battery Charger and Discharger is introduced the modular converter method that can be added the converter modules according to the load variation.

  • PDF

11차/13차 고조파를 동시에 제거하는 Single Tuned 필터 (A Study on the Performance Enhancement of HVDC System Using Hybrid Filter and Energy Recovery Filter)

  • 김찬기;양병모;정길조;안정식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.717-721
    • /
    • 2003
  • Two non-conventional HVDC converter arrangements are compared. These include the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. Results show that both options have comparable steady state and transient performance. Danger of ferroresonance with the CSCC option is eliminated by controlling the amount of series compensation. The dynamic performance simulations is peformed by PSCAD/EMTDC

  • PDF

An Optimization Design of the Diode Clamped Multi-Level Converter for Coaxial Inductive Power Transfer on the Low Voltage DC Micro-grid

  • Pairindra, Worapong;Khomfoi, Surin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.333-344
    • /
    • 2018
  • This proposed paper aims for the high efficiency contactless power transfer in household dc power distribution. A 300 W five-level diode clamped multi-level converter with 300 Vdc input dc link bus is employed for the power transferring task and the output voltage range is controlled at 48 Vdc. The inner and outer solenoid coils are used for inductive power transfer (IPT) transformer with the 200 kHz switching frequency for designed power density. Therefore, to achieve the converter efficiency above 95%, the LLC series resonant with fundamental harmonic analysis (FHA) and the calculated switching angles are used as an optimized tool for designing the system resonant tank. The validations of this approached topology are illustrated in both MATLAB/Simulink simulation and implementation.

$S^4-PFC$ 에서 보조회로를 이용한 입력 전류 파형의 개선 (Input Current Shaping in $S^4-PFC$ Converter with Auxiliary Switch)

  • 이성백;김태웅;이장현
    • 조명전기설비학회논문지
    • /
    • 제14권1호
    • /
    • pp.82-88
    • /
    • 2000
  • 본 논문은 궤환 권션을 갖는 $S^4-PFC$ 컨버터에서 기존의 DC 버스 전압 제한 능력과 높은 효율을 유지하면서 입력 전류 파형을 개선시킬 수 있는 저비용의 보조회로펀 제안하였다. 제안한 컨버터를 검증하지 위하여 궤환 권선을 갖는 컨버터를 분석하였다. 제안한 컨버터의 성능응 입증하기 위해 상용 라인 입력 전압범위에서 5[V], 65[W] 출력과 스위칭 주파수 100[kHz]에서 동작하는 컨버터 설계하였다. 그리고 실험을 통하여 기존 컨버터에 비하여 라인 전류 파형의 첨두값이 50[%] 감소하고 라인 주기에서 전력이용률이 증가하였다.

  • PDF

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.