• Title/Summary/Keyword: building information model(BIM)

Search Result 412, Processing Time 0.024 seconds

Support plan for introduction of BIM on Small and Medium Architectural firm (BIM 도입 활성화를 위한 중소건축사사무소 지원 방안)

  • Kim, Yong-Jun;Kim, Hong-Su;Kim, Myoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.669-679
    • /
    • 2016
  • Architectural firms that would like to adopt the BIM are currently in an unfavorable position because of reduced orders, polarization of orders, and low price design. This study was conducted to evaluate plausible methods for supporting introduction of BIM into small sized firms. Before suggesting plans for support, we analyzed support projects and laws relating to support for small sized firms, after which we conducted a survey of small sized firms that support the project. The survey was completed by 242 architects and consisted of questions regarding the following aspects: current status and problems associated with BIM utilization, preference of certain policies for BIM introduction support, and reasonable level of support. After the survey, it was concluded that architectural firms are willing to use BIM and agree with the need for financial support for BIM program purchase and education, as well as to support BIM experts and fund low interest loans. In conclusion, it is proposed that support plans for small sized architectural firms in the areas of BIM introduction consulting, financial funding for the introductory process, provision of education and experts, order support, and promotions for accomplishment be provided.

Synergies between Digital Models and Physical Models in Convergence Design - Case Studies using Projects of Architectural Firms and Educational Environments - (건축설계에서 융합설계를 위한 디지털 모델과 물리 모델의 역할과 상호보완성 - 건축설계 회사와 교육환경의 사례를 중심으로 -)

  • Kim, Do-Young
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.29-44
    • /
    • 2019
  • This paper is to explore examples of complementary use of digital and physical models. The reason for this is to suggest a method for commercializing architectural design considering high technology. These cases are the practical and educational environment in which design processes based on digital computation technology are performed. Also, in this environment, analog design media (eg, physical models) still being used in the design process using digital computing. Indeed, in this environment, designers are exploiting digital and physical models to address the types of risks that can be discovered when designs are implemented and these risks. By analyzing these cases, we define the roles of digital and physical models to visualize and resolve risks. This paper focuses on one of method as "prototyping", which is used in the field of machinery and is a difficult method to carry out in the conventional design process. In particular, designers look for benefits that encourage designers in utilizing current digital computation technologies (eg, parametric design, simulation, building information models, and digital fabrication). Among the roles of the physical model, roles that can not be replaced by the digital model are explored. It is clear that this case-based study has difficulty in generalizing the design method. However, it helps the designers of today's practical and educational environment to verify and design the actual details of construction and operation when applying and developing unfamiliar materials and methods in the field of architecture.

Forthcoming Big Data in Smart Cities: Experiment for Machine Learning Based Happiness Estimation in Seoul City (빅데이터를 이용한 서울시 행복지수 분석 및 예측을 위한 실험 및 고찰)

  • Shin, Dongyoun;Song, Yu-Mi
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • Cities have complex system composed diverse activities. The activities in cities have complex relationship that creates diverse urban phenomena. Big Data is emerging technology in order to understand such complex network. This research aims to understand such relations by analysing the diverse city indexes. 28 indexes were collected in 25 of districts in Seoul city and analysed to find a weighted correlation. By defining the correlation values of certain years, it tries to predict the missed index values, "happiness" of each districts in other years. The result presents that the overall prediction accuracy 70.25%. However, for further discussion, the result is considered that this methods may not enough to use in practice, since the data has inconstant accuracy by different learning years.

A Study on Application of CPLM using Process Model of the Pre-design stage (건축 기획단계 프로세스 모델의 CPLM 적용에 관한 연구)

  • Park, Do-Young;Jun, Yeong-Jin;Moon, Sung-Kon;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.205-208
    • /
    • 2009
  • The purpose of this study is to apply the process model of the pre-design stage to CPLM(Construction Project Life-cycle Management). Life-cycle consists of 4 stage; Pre-design, Design, Construction, Maintenance. Each stage has organic relations between front and rear stage. Therefore it is important to manage and use the information data of each stage. But these data are not carried to the next stage smoothly, especially at the pre-design stage. It is even vague to define the process of the pre-design stage. To carry and share the information well, this study defines Pre-design stage process and CPLM at first, VA-Cityplanner which is the development system of the pre-design process model is applied to CPLM for the smooth current of the data between participants.

  • PDF

Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames (골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시)

  • Park, Inae;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • This study is centered on the combined use of LiDAR(Light Detection and Ranging) and AR(Augmented Reality) technologies during vertical and horizontal frame measurements in construction projects. The intention is to enhance the quality control procedure, elevate accuracy, and curtail manual labor along with time expenditure. Present methods for accuracy inspection in frame construction often grapple with reliability concerns due to subjective interpretation and the scope for human error. This research recommends the application of LiDAR and AR technologies to counter these issues and augment the efficiency of the inspection process, along with facilitating the dissemination of results. The suggested technique involves the collection of 3D point cloud data of the frame utilizing LiDAR and leveraging this data for checks on construction accuracy. Furthermore, the inspection outcomes are fed into a BIM (Building Information Modeling) model, and the results are visualized via AR. Upon juxtaposing this methodology with the current approach, it is evident that it offers benefits in terms of objective inspection, speed, precise result sharing, and potential enhancements to the overall quality and productivity of construction projects.

A Study on DEM-based Automatic Calculation of Earthwork Volume for BIM Application

  • Cho, Sun Il;Lim, Jae Hyoung;Lim, Soo Bong;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Recently the importance of BIM (Building Information Modeling) that enables 3D location-based design and construction work is being highlighted around the world. In Korea, the road map has been established to settle the design based on BIM using drone survey results by 2025. As the first step, BIM would be applied to road construction projects worth more than 50 billion Korean Won from 2020. On the other hand, drone survey regulation has been enacted and the data for drone survey cost were also included on Standard of construction estimate in 2020. However, more careful improvement is required to reflect drone survey results in BIM design and construction. Currently, Engineering instructions and Standard of construction estimate specifies that earthwork volume must be calculated by cross section method only. So it is required to add the method of DEM (Digital Elevation Model) based volume calculation on these regulations to realize BIM application. In order for that, this study verified the method of DEM based earthwork volume calculation. To get an accurate DEM for accurate volume computation, drone survey was carried out according to the drone survey regulation and then could get an accurate DEM data which have errors less than 3cm in X, Y and 6.8cm in H. As each DEM cell has 3D coordinate component, the volume of each cell can be calculated by obtaining the height of area of the cell then total volume is calculated by multiplying total number of cells by volume of each cell for the construction area. Verification for the new calculation method compare with existing method was carried out. The difference between DEM based volume by drone survey and cross section based volume by traditional survey was less than 1.33% and it can be seen that new DEM method will be able to be applied to BIM design and construction instead of cross section method.

Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models - (생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 -)

  • Yoo, Youngjin;Lee, Jin-Kook
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.

Digital Twin Model of a Beam Structure Using Strain Measurement Data (보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현)

  • Han, Man-Seok;Shin, Soo-Bong;Moon, Tae-Uk;Kim, Da-Un;Lee, Jong-Han
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

Development of Pre-construction Verification System using AR-based Drawings Object (도면증강 객체기반의 건설공사 사전 시공검증시스템 개발 연구)

  • Kim, Hyeonsung;Kang, Leenseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2020
  • Recently, as a BIM-based construction simulation system, 4D CAD tools using virtual reality (VR) objects are being applied in construction project. In such a system, since the expression of the object is based on VR image, it has a sense of separation from the real environment, thus limiting the use of field engineers. For this reason, there are increasing cases of applying augmented reality (AR) technology to reduce the sense of separation from the field and express realistic VR objects. This study attempts to develop a methodology and BIM module for the pre-construction verification system using AR technology to increase the practical utility of VR-based BIM objects. To this end, authors develop an AR-based drawing verification function and drawing object-based 4D model augmentation function that can increase the practical utility of 2D drawings, and verify the applicability of the system by performing case analysis. Since VR object-based image has a problem of low realism to field engineers, the linking technology between AR object and 4D model is expected to contribute to the expansion of the use of 4D CADsystem in the construction project.

Study on 3D Image Scan-based MEP Facility Management Technology (3차원 이미지 스캔 기반 MEP 시설물 관리 기술 연구)

  • Kang, Tae Wook
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.18-26
    • /
    • 2016
  • Recently, for the purpose of maintenance of facilities and energy, there have been growing cases of the 3D image scan-based reverse design technology mostly in the manufacturing field. In the MEP field, because of differences between design and physical model, the reverse technology has been utilized in factory facilities such as a semiconductor factory. Because 3D point clouds from scanning include accurate 3D object information, the efficiency of management works related to the complex MEP facilities can be enhanced. In this study, the reverse technology was surveyed, and the MEP facility management based on 3D image scanning was analyzed. Based on the results, a method of 3D image scan-based MEP facility management was proposed.