• 제목/요약/키워드: buckling behaviors

검색결과 194건 처리시간 0.027초

아치 리브를 따라 작용하는 등분포 하중을 받는 포물선 아치 리브의 비탄성 면내좌굴 강도 (In-plane Inelastic Buckling Strength of Parabolic Arch Ribs Subjected Distributed Loading Along the Axis)

  • 윤기용;문지호;김성훈;이학은
    • 한국방재학회 논문집
    • /
    • 제5권1호
    • /
    • pp.55-62
    • /
    • 2005
  • 포물선 아치 리브는 원형 아치 리브와 더불어 실무에 폭넓게 적용되고 있는 아치 형상이다. 원형 아치 리브의 비탄성 면내 거동에 관한 연구는 1990년대 Trahair(1996)를 중심으로 연구가 진행되었으며, Yong-Lin Pi와 Bradford(2004)에 의하여 최근까지 연구가 활발히 진행 되고 있다. 포물선 아치 리브의 비탄성 면내 거동에 관한 연구는 일본의 연구자(Sinke, Kuranishi)을 중심으로 1970년대 후반부터 1980년대 초반에 이르기까지 많은 연구가 진행되었다. 이러한 포물선 아치 리브에 관한 일본에서의 연구는 대부분 라이즈비가 $0.1{\sim}0.2$에 국한 되어있다. 본 연구에서는 비탄성 유한요소해석을 이용하여 라이즈비가 0.1에서 0.4에 이르는 박스형태의 단면을 갖는 포물선 아치 리브의 면내 거동에 관하여 연구를 수행하였다. 연구 결과 라이즈비가 증가할수록 아치 단면에 휨모멘트가 증가하였으며, 압축력이 수직 등분포 하중을 받는 포물선 아치 리브의 면내 좌굴 안정성에 미치는 영향은 감소하였다. 마지막으로 본 연구에서는 아치 리브를 따라 작용하는 수직등분포 하중을 받는 포물선 아치의 좌굴 곡선을 제안하였다.

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.723-731
    • /
    • 2022
  • Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

해상풍력타워용 버켓기초의 좌굴거동 (Buckling Behaviors of Bucket Foundation for Offshore Wind Tower)

  • 이계희;짠득푸
    • 한국해안·해양공학회논문집
    • /
    • 제25권3호
    • /
    • pp.123-127
    • /
    • 2013
  • 본 논문에서는 해상풍력발전터빈의 기초형식 중 하나인 버켓기초의 관입시 발생할 수 있는 좌굴거동에 대한 연구를 수행하였다. 유한요소를 사용하여 대상구조물을 모델링하고 현재 설계기준의 기본인 원통형 쉘의 좌굴거동을 해석하여, Batdorf의 계수에 따라 설계기준에 제시된 식과 비교하여 모델의 검증을 수행하였다. 검증된 해석 모델을 바탕으로 인접한 지반의 영향 및 하중조건을 적용하고 종방향보강재와 관입깊이가 좌굴성능에 미치는 영향을 평가하였다. 평가결과 종방향보강재의 적용은 특정영역에서 좌굴강도를 크게 증가시키고 인접한 지반의 영향은 관입에 따라 선형적으로 증가하는 것으로 나타났다.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.85-94
    • /
    • 2023
  • In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.

굽힘하중을 받는 보강 사각관 보의 좌굴변형거동 해석 (Bending Analysis of Reinforced Tube Beams)

  • 최낙삼;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.60-65
    • /
    • 2007
  • Local buckling behaviors of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been analyzed using experimental tests combined with theoretical and finite element analyses. For this analysis true stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing. True strains were also obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens reinforced by aluminum plates were employed for the bending test. The bending deformation behaviors up to the maximum load analyzed by the numerical simulation agreed well with experimental ones. After passing the maximum load, reinforcing plate hindering the local buckling of the tube beam was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed the most excellent bending capacity, which could be explained on the basis of the neutral axis shift and the local buckling deformation range.

  • PDF

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.