Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.2.091

Frequency, bending and buckling loads of nanobeams with different cross sections  

Civalek, Omer (China Medical University)
Uzun, Busra (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering)
Yayli, M. Ozgur (Bursa Uludag University, Faculty of Engineering, Department of Civil Engineering)
Publication Information
Advances in nano research / v.9, no.2, 2020 , pp. 91-104 More about this Journal
Abstract
The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.
Keywords
bending; buckling; vibration; carbon nanotubes; finite element method; nonlocal elasticity theory; Euler-Bernoulli beam theory;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J. Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002.   DOI
2 Jalaei, M.H., Arani, A.G. and Nguyen-Xuan, H. (2019), "Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory", Int. J. Mech. Sci., 161, 105043. https://doi.org/10.1016/j.ijmecsci.2019.105043.   DOI
3 Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.   DOI
4 Uzun, B. and Civalek, O. (2019a), "Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials", Math. Comput. Appl., 24(2), 38. https://doi.org/10.3390/mca24020038.
5 Uzun, B. and Civalek, O. (2019b), "Free vibration analysis silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., Int. J., 7(2), 99-108. https://doi.org/10.12989/anr.2019.7.2.099.   DOI
6 Uzun, B. and Yayli, M.O. (2020), "Nonlocal vibration analysis of Ti-6Al-4V/$ZrO_2$ functionally graded nanobeam on elastic matrix", Arab. J. Geosci., 13(4), 1-10. https://doi.org/10.1007/s12517-020-5168-4.   DOI
7 Uzun, B., Yayli, M.O. and Deliktas, B. (2020), "Free vibration of FG nanobeam using a finite-element method ", Micro Nano Lett., 15(1), 35-40. https://doi.org/10.1049/mnl.2019.0273.   DOI
8 Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress", Appl. Phys. A, 99(4), 907-911. https://doi.org/10.1007/s00339-010-5666-4.   DOI
9 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
10 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.   DOI
11 Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E Low Dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002.   DOI
12 Koiter, W.T. (1964), "Couple stresses in the theory of elasticity: I and II", Proc. K. Ned. Akad. Wet. B Phys. Sci., 67, 17-44.
13 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.   DOI
14 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity ", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
15 Mercan, K. and Civalek, O. (2017), "Buckling analysis of silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.   DOI
16 Bedia, W.A., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Braz. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2.   DOI
17 Yayli, M.O. (2016), "A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions", J. Vib. Control, 22(10), 2542-2555. https://doi.org/10.1177/1077546314549203.   DOI
18 Yayli, M.O. (2017), "Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring", Micro Nano Lett., 12(4), 255-259. https://doi.org/10.1049/mnl.2016.0662.   DOI
19 Yayli, M.O. (2018), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Braz. Soc. Mech. Sci. Eng., 40(9), 419. https://doi.org/10.1007/s40430-018-1346-7.   DOI
20 Barretta, R. and Marottide Sciarra, F. (2013), "A nonlocal model for carbon nanotubes under axial loads", Adv. Mater. Sci. Eng., 360935. https://doi.org/10.1155/2013/360935.
21 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.   DOI
22 Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.   DOI
23 Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.   DOI
24 Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the eulerbernoulli beam theory based on non-local continuum model", Asian J. Civ. Eng., 12(5), 651-661.
25 Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.   DOI
26 Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams in cluding surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
27 Civalek, O. and Kiracioglu, O. (2007), "Discrete singular convolution for free vibration analysis of anisotropic rectangular plates", Math. Comput. Appl., 12(3), 151-160. https://doi.org/10.3390/mca12030151.
28 Mercan, K., Numanoglu, H.M., Akgoz, B., Demir, C. and Civalek, O. (2017), "Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix", Arch. Appl. Mech., 87(11), 1797-1814. https://doi.org/10.1007/s00419-017-1288-z.   DOI
29 Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.   DOI
30 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
31 Demir, C. and Civalek, O. (2017b), "On the analysis of microbeams", Int. J. Eng. Sci, 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
32 Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.   DOI
33 Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal con tinuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050.   DOI
34 Demir, C. and Civalek, O. (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.   DOI
35 Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., Int. J., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
36 Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theor. Appl. Mech., 53(4), 1041-1052. https://doi.org/10.15632/jtam-pl.53.4.1041.   DOI
37 Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory ", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
38 Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3(1), 1-7. https://doi.org/10.1007/BF02327219.   DOI
39 Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
40 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in lin ear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.   DOI
41 Murmu, T. and Adhikari, S. (2010), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12), 123507. https://doi.org/10.1063/1.3520404.   DOI
42 Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.   DOI
43 Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021.   DOI
44 Narendar, S. (2012), "Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nanorods", Finite Elem. Anal. Des., 62, 65-75. https://doi.org/10.1016/j.finel.2012.06.012.   DOI
45 Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer International Publishing, Switzerland.
46 Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
47 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
48 Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752.   DOI
49 Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3083. https://doi.org/10.1007/s12206-015-0826-2.   DOI
50 Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta Mechanica, 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5.   DOI
51 Gurtin, M.E. and Murdoch, A.I. (1975a), "Addend a to our paper: A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 59(4), 389-390. https://doi.org/10.1007/BF00250426.   DOI
52 Gurtin, M.E. and Murdoch, A.I. (1975b), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.   DOI
53 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.   DOI
54 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.   DOI
55 Heydarpour, Y. and Malekzadeh, P. (2019), "Dynamic stability of cylindrical nanoshells under combined static and periodic axial loads", J. Braz. Soc. Mech. Sci. Eng., 41(4), 184. https://doi.org/10.1007/s40430-019-1675-1.   DOI
56 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
57 Akgoz, B. and Civalek, O. (2017a), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.   DOI
58 Akgoz, B. and Civalek, O. (2017b), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.   DOI
59 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0.   DOI
60 Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053.   DOI
61 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the an alysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.   DOI
62 Numanoglu, H.M. and Civalek, O. (2019), "On the dynamics of small-sized structures", Int. J. Eng. Sci., 145, 103164. https://doi.org/10.1016/j.ijengsci.2018.05.001.   DOI
63 Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.   DOI
64 Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, USA.
65 Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal str ess and microstructural strain gradient size effects", Thin Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045.   DOI
66 Schrlau, M.G. (2011), "Carbon nanotube-based sensors: overview", Compr. Biomater., 3, 519-528.   DOI
67 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling an alysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
68 Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on th ermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.   DOI
69 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.   DOI
70 Uzun, B., Numanoglu, H. and Civalek, O. (2018), "Free vibration analysis of BNNT with different cross-Sections via nonlocal FEM", J. Comput. Appl. Mech., 49(2), 252-260. https://doi.org/10.22059/jcamech.2018.
71 Attia, A. Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
72 Ansari, R. Gholami, R. and Darabi, M.A. (2011), "Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory", J. Therm. Stresses, 34(12), 1271-1281. https://doi.org/10.1080/01495739.2011.616802.   DOI
73 Arani, A.G. and Jalaei, M.H. (2016), "Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation", Int. J. Eng. Sci., 103, 97-113. https://doi.org/10.1016/j.ijengsci.2016.02.006.   DOI
74 Asemi, S.R. Farajpour, A. Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E Low Dimens. Syst. Nanostruct., 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009.   DOI
75 Aydogdu, M. (2009), "A general nonlocal beam theory : its application to nanobeam bending, buckling and vibration", Physica E Low Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.   DOI
76 Aydogdu, M. and Arda, M. (2016), "Torsional vibration an alysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., 12(1), 71-84. https://doi.org/10.1007/s10999-014-9292-8.   DOI