DOI QR코드

DOI QR Code

Buckling Behaviors of Bucket Foundation for Offshore Wind Tower

해상풍력타워용 버켓기초의 좌굴거동

  • Lee, Gye Hee (Dept. of Ocean & Plant Construction Engineering, Mokpo National Maritime University) ;
  • Tran, Duc Phu (Dept. of Ocean & Plant Construction Engineering, Mokpo National Maritime University)
  • 이계희 (목포해양대학교 해양.플랜트건설공학과) ;
  • 짠득푸 (목포해양대학교 해양.플랜트건설공학과)
  • Received : 2013.01.29
  • Accepted : 2013.05.21
  • Published : 2013.06.29

Abstract

In this study, the buckling behaviors during the installation of a bucket foundation for an offshore wind turbine tower were investigated. The objective structure was modeled by using a commercial structural analysis program, and the buckling behavior of the model was estimated as Batdorf's parameter Z in the design code. The surrounding soil conditions and loading condition were applied to the verified analysis model. The effects of parameters such as the longitudinal stiffeners and driven depth were estimated for the buckling capacity. As a result, it was found that the longitudinal stiffeners could drastically increase the buckling capacity in a specific region. In addition, the buckling capacities increased linearly when considering the effect of the surrounding soil.

본 논문에서는 해상풍력발전터빈의 기초형식 중 하나인 버켓기초의 관입시 발생할 수 있는 좌굴거동에 대한 연구를 수행하였다. 유한요소를 사용하여 대상구조물을 모델링하고 현재 설계기준의 기본인 원통형 쉘의 좌굴거동을 해석하여, Batdorf의 계수에 따라 설계기준에 제시된 식과 비교하여 모델의 검증을 수행하였다. 검증된 해석 모델을 바탕으로 인접한 지반의 영향 및 하중조건을 적용하고 종방향보강재와 관입깊이가 좌굴성능에 미치는 영향을 평가하였다. 평가결과 종방향보강재의 적용은 특정영역에서 좌굴강도를 크게 증가시키고 인접한 지반의 영향은 관입에 따라 선형적으로 증가하는 것으로 나타났다.

Keywords

References

  1. ABAQUS 6.10 User's Manual, Simulia, 2011.
  2. Batdorf, S.B. (1947a). A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells I-Donnell's Equation. Tech. Not. 1341.
  3. Batdorf, S.B. (1947b). A simplified method of elastic-tability analysis for thin cylindrical shells II-modified equilibrium equation. Tech. Not. 1342.S
  4. Chu, S.B. and Kim, C.S. (2002). Orthotropic Plate Analysis of Stiffened Plates with Open Ribs, Journal of Korea Society of Steel Construction, 14, 701-711(in Korean)
  5. Donnell, L.H. (1935). Stability of Thin-walled Tubes Under Torsion. Tech. Rep. 479, NACA.
  6. Det Norske Veritas (2010). Buckling Strength of Shells, Recommended Practice DNV-RP-C202. Det. Nor. Ver. Class. AS, Veritasveien 1, N-1322 Hovik, Norway.
  7. Eaton, J.W., Bateman, D. and Hauberg, S (2007), GNU Octave.
  8. Houlsby, G.T., Ibsen, L-B. and Byrne, B.W. (2005) Suction Caissons for Wind Turbines. Proc. Int. Symp. Front. in Offsh. Geotech., Perth, Australia, pp 75-94.
  9. Korea Geotechnical Sosiety(2002), Deep foundations(in Korean), Koomi Books.
  10. Pinna, R., Martin, C.M. & Ronalds, B.F. (2001). Guidance for Design of Suction Caissons Against Buckling during Installation in Clay Soils. Proc. 11th Int. Offsh. and Pol. Eng. Conf..
  11. Pinna, R. & Ronalds, B.F. (2000). Hydrostatic Buckling of Shells with Various Boundary Conditions. J. of Constr. St. Res., 56, 1-16. https://doi.org/10.1016/S0143-974X(99)00104-2
  12. Pinna, R. & Ronalds, B.F. (2003). Buckling and Postbuckling of Cylindrical Shells with One End Pinned and the Other End Free. Thin-Walled Struct., 41 (6), 507-527. https://doi.org/10.1016/S0263-8231(03)00006-5

Cited by

  1. Buckling of monopod bucket foundations-influence of boundary conditions and soil-structure interaction vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.641