Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.3.215

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors  

Nejadi, Mohammad Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Computers and Concrete / v.25, no.3, 2020 , pp. 215-224 More about this Journal
Abstract
In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.
Keywords
buckling and vibration analysis; DQM; variable.elastic foundation; nano sandwich composite beam; various porosity distributions;
Citations & Related Records
Times Cited By KSCI : 42  (Citation Analysis)
연도 인용수 순위
1 Zhang, H.S. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nano tube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.   DOI
2 Xiang, S., Wang, J., Ai, Y.T. and Li, G.Ch. (2015), "Buckling analysis of laminated composite plates by using various higher-order shear deformation theories", Mech. Compos. Mater., 51(5), 645-654. https://doi.org/10.1007/s11029-015-9534-3.   DOI
3 Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nano tube-reinforced composite", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.   DOI
4 Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.   DOI
5 Yazdani, R., Mohammadimehr, M. and Zenkour, A.M. (2019), "Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings", Steel Compos. Struct., 33(1), 93-109. https://doi.org/10.12989/scs.2019.33.1.093.   DOI
6 Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.   DOI
7 Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.   DOI
8 Zaoui, F.Z., Djamel Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.   DOI
9 Zghal, S., Frikha, A. and Dammak, F. (2017), "Static analysis of functionally graded carbon nano tube-reinforced plate and shell", Compos. Struct., 176, 1107-1123.   DOI
10 Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.   DOI
11 Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.   DOI
12 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
13 Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.   DOI
14 Anvari, M., Mohammadimehr, M. and Amiri, A. (2020), "Vibration behavior of a micro cylindrical sandwich panel reinforced by graphene platelet", J. Vib. Control, 1077546319892730. https://doi.org/10.1177/1077546319892730.
15 Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.   DOI
16 Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Laser. Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.   DOI
17 Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035.   DOI
18 Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2019), "Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution", J. Vib. Control, 25(23-24), 2875-2893. https://doi.org/10.1177/1077546319860314.   DOI
19 Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280.   DOI
20 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
21 Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.   DOI
22 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
23 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
24 Bourada, F., Bousahla, AA., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.   DOI
25 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Comput. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8.   DOI
26 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
27 Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nano tubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x.   DOI
28 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.   DOI
29 Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.   DOI
30 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
31 Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.   DOI
32 Fang, W., Yu, T., Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.   DOI
33 Ferreira, A.D.B., Novoa, P.R. and Marques, A.T. (2016), "Multifunctional material systems: A state-of-the-art review", Compos. Struct., 151, 3-35. https://doi.org/10.1016/j.compstruct.2016.01.028.   DOI
34 Ghorbanpour Arani, A., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.   DOI
35 Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.   DOI
36 Gui, X., Li, H., Zhang, L., Jia, Y., Liu, L., Li, Z., Wei, J., Wang, K., Zhu, H., Tang, Z., Wu, D. and Cao, A. (2011), "A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nano tube sponges", ACS Nano, 5, 4276-4283. https://doi.org/10.1021/nn201002d.   DOI
37 Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of Carbon Nano Tube reinforced composites", Proc. Royal Soc. A, 461, 1685-1710. https://doi.org/10.1098/rspa.2004.1422.   DOI
38 Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating Carbon Nano Tubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI
39 Jabbari, M. and Rezaei, M. (2016), "Mechanical buckling of FG saturated porous rectangular plate with piezoelectric actuators", Iran. J. Mech. Eng., 17(2), 45-65.
40 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.   DOI
41 Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663.   DOI
42 Kacar, A., Tan, H.T. and Kaya, M.O. (2011), "Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method", Math. Comput. Appl., 16(3), 773-783. https://doi.org/10.3390/mca16030773.
43 Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
44 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.   DOI
45 Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.   DOI
46 Kim, S.E., Duc, N.D., Nam, V.H. and Van Sy, N. (2019), "Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment", Thin Wall. Struct., 142, 287-296. ttps://doi.org/10.1016/j.tws.2019.05.013.   DOI
47 Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidisc. Model. Mater. Struct., 13(4), 590-611. https://doi.org/10.1108/MMMS-05-2017-0032.   DOI
48 Liu, S., Yu, T., Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.   DOI
49 Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theo. Appl. Mech., 47(2), 421-433.
50 Magnucka, E. (2008), "Axisymmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46, 333-337. https://doi.org/10.1016/j.tws.2007.06.006.   DOI
51 Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theo. Appl. Mech., 42(4), 859-868.
52 Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.   DOI
53 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.   DOI
54 Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.   DOI
55 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., ... & Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
56 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.   DOI
57 Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two opposite edges simply supported", Mech. Eng. Sci., 224, 1831-1841. https://doi.org/10.1243/09544062JMES1804.   DOI
58 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. http://dx.doi.org/10.12989/sem.2016.59.3.431.   DOI
59 Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B, 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040.   DOI
60 Mohammadimehr, M., Hooyeh, H.M, Afshari, H. and Salarkia, M.R. (2017b), "Free vibration analysis of double-bonded isotropic piezoelectric Timoshenko micro-beam based on strain gradient and surface stress elasticity theories under initial stress stress using differential quadrature method", Mech. Adv. Mater. Struct., 24(4), 287-303. https://doi.org/10.1080/15376494.2016.1142022.   DOI
61 Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022.   DOI
62 Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.   DOI
63 Montemurro, M., Vincenti, A. and Vannucci, P. (2012), "Design of the elastic properties of laminates with a minimum number of plies", Mech. Compos. Mater., 48(4), 369-390. https://doi.org/10.1007/s11029-012-9284-4.   DOI
64 Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. and Hui, D. (2018), "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. Part B: Eng., 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012.   DOI
65 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
66 Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B: Eng., 153, 456-479. https://doi.org/10.1016/j.compositesb.2018.09.014.   DOI
67 Rajabi, J. and Mohammadimehr, M. (2019a), "Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.   DOI
68 Rajabi, J. and Mohammadimehr, M. (2019b), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.   DOI
69 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.   DOI
70 Shahedi, S. and Mohammadimehr, M. (2020), "Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment", J. Sandw. Struct. Mater., 22(2), 248-302. https://doi.org/10.1177/1099636217738908.   DOI
71 Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.   DOI
72 Shen, M., Shi, Z., Zhao, C., Zhong, X., Liu, B. and Shu, X. (2019), "2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements", Comput. Concrete, 24(3), 207-222. https://doi.org/10.12989/cac.2019.24.3.207.   DOI
73 Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.   DOI
74 Sudheer, M., Pradyoth, K.R. and Somayaji, S (2015), "Analytical and numerical validation of epoxy/glass structural composites for elastic models", Am. J. Mater. Sci., 5(3C), 162-168. https://doi.org/10.5923/c.materials.201502.32.
75 Syiemiong, H. and Marthong, C. (2019), "Effect of moisture on the compressive strength of low-strength hollow concrete blocks", Comput. Concrete, 23(4), 267-272. https://doi.org/10.12989/cac.2019.23.4.267.   DOI
76 Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concrete, 24(1), 63-71. https://doi.org/10.12989/cac.2019.24.1.063.   DOI
77 Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.   DOI
78 Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nano tubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.   DOI
79 Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 02081, 1-55. https://doi.org/10.1115/1.4028859.
80 Wang, J., Chen, X., Bu, X. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.   DOI
81 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nano tube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.   DOI
82 Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011-17. https://doi.org/10.1142/S0219455415400118.   DOI
83 Wu, L. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64, 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.   DOI