• 제목/요약/키워드: bubble flow

검색결과 567건 처리시간 0.031초

미세관에서의 기포성장에 대한 수치적 연구 (Numerical Study of Bubble Growth in a Microchannel)

  • 서기철;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석 (DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL)

  • 신승원
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

직렬 배열된 두 기포의 bursting jet에 대한 수치적 연구 (Numerical Study of Bursting Jet in Two Tandem Bubbles)

  • 이창걸;이선엽;;이재화
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.52-60
    • /
    • 2020
  • When a bubble reaches a free surface, a bursting of the bubble produces a high speed jet. Despite its practical importance, significant effort has been devoted to investigate a bursting jet by a single bubble near a free surface. In the present study, we perform numerical simulations of bubbles in a tandem arrangement at Bo=0.05. The configuration of the tandem bubbles is systematically varied by changing a radius of a following bubble (RF) and the gap distance between two bubbles (L). Compared to a single bubble case, we show that the bursting bubble in the tandem arrangement accelerates, and the jet velocity increases. Moreover, we find that a critical gap distance at which the jet velocity unexpectedly changes exists in the tandem case.

마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석 (Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.605-612
    • /
    • 2016
  • 버블젯 타입 마이크로 엑츄에이터의 설계변수에 따른 유동특성에 관한 수치해석적 연구를 수행하였다. 수치 모델은 저장소로 부터의 잉크 유동과 기포의 성장 및 소멸, 노즐을 통한 액적의 토출과 리필 과정을 포함한다. 기포의 거동은 전체 엑츄에이터의 성능에 중요한 영향을 미치는 요소이기 때문에, 본 연구에서는 open pool 해석을 통하여 기포의 성장과 소멸 및 소멸시의 캐비테이션 현상에 대해 살펴보았다. 또한 마이크로 엑츄에이터의 노즐 형상의 변화, 챔버와 리스트릭터의 기하학적 변화에 따른 액적의 토출과 잉크 리필과정에 대한 수치예측을 수행하였다. 설계변수의 변화에 따른 수치해석의 결과는 마이크로 엑츄에이터의 성능특성을 예측할 수 있으며 또한 마이크로 엑츄에이터의 최적설계에 유용하리라 판단된다.

수직상향 기체주입시 기포거동에 관한 연구 (A Study on the Bubble Behavior in the Vertical-upward Gas Injection)

  • 서동표;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • In the present study, the gas injection system based on air-water model was designed to investigate the behavior characteristics of bubbles injected into a ladle. The parameters such as gas volume fraction and bubble rise velocity were exprementally measured in a gas-liquid flow region. To measure gas volume fraction, an electo-conductivity probe was used and bubble rise velocity was obtained by a high speed CCD camera. Gas volume fraction was symmetric to the axis of nozzle secured on the bottom of a ladle. The bubble rise velocity was calculated for two different experimental conditions. That is, gas flow conditions were following two case: 1) Q = $0.63{\times}10^{-4}$ $m^{3}/s$, 2) $1.26{\times}10^{-4}$ $m^{3}/s$. As a gas injected into the liquid ladle, the liquid-phase region is circulated by bubbles' behavior. The bubble rise velocity was influenced of the circulation flow of liquid phase. As a result, the bubble rise velocity was appeared higher middle region of ladle than near the nozzle.

  • PDF

New Bubble Size Distribution Model for Cryogenic High-speed Cavitating Flow

  • Ito, Yutaka;Tomitaka, Kazuhiro;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.700-710
    • /
    • 2008
  • A Bubble size distribution model has been developed for the numerical simulation of cryogenic high-speed cavitating flow of the turbo-pumps in the liquid fuel rocket engine. The new model is based on the previous one proposed by the authors, in which the bubble number density was solved as a function of bubble size at each grid point of the calculation domain by means of Eulerian framework with respect to the bubble size coordinate. In the previous model, the growth/decay of bubbles due to pressure difference between bubble and liquid was solved exactly based on Rayleigh-Plesset equation. However, the unsteady heat transfer between liquid and bubble, which controls the evaporation/condensation rate, was approximated by a theoretical solution of unsteady heat conduction under a constant temperature difference. In the present study, the unsteady temperature field in the liquid around a bubble is also solved exactly in order to establish an accurate and efficient numerical simulation code for cavitating flows. The growth/decay of a single bubble and growth of bubbles with nucleation were successfully simulated by the proposed model.

  • PDF

Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices

  • Wei, Bing;Wang, Yuanyuan;Wen, Yangbing;Xu, Xingguang;Wood, Colin;Sun, Lin
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.24-32
    • /
    • 2018
  • Nanocellulose was surface-functionalized toward the applications in enhanced oil recovery (EOR) as a green alternative. The focus of this paper is on the effect of this material based nanofluid (NF) on foam lamella stabilization through studying its bubble breakup dynamics and flow behaviors in constricted mircofluidic devices. The NF stabilized foam produced an improved flow resistance across the capillary largely due to the capillary trapped bubbles at the contraction. The "snap-off" caused the NF stabilized foam to produce finer textured bubbles, which can migrate readily forward to the deep porous media, as revealed by the pressure profiles.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구 (Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments)

  • 백부근;박일룡;김기섭;이건철;김민재;김경열
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.