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Abstract 

 
A Bubble size distribution model has been 

developed for the numerical simulation of cryogenic 
high-speed cavitating flow of the turbo-pumps in the 
liquid fuel rocket engine. The new model is based on 
the previous one proposed by the authors, in which 
the bubble number density was solved as a function of 
bubble size at each grid point of the calculation 
domain by means of Eulerian framework with respect 
to the bubble size coordinate. In the previous model, 
the growth/decay of bubbles due to pressure 
difference between bubble and liquid was solved 
exactly based on Rayleigh-Plesset equation. However, 
the unsteady heat transfer between liquid and bubble, 
which controls the evaporation/condensation rate, was 
approximated by a theoretical solution of unsteady 
heat conduction under a constant temperature 
difference. In the present study, the unsteady 
temperature field in the liquid around a bubble is also 
solved exactly in order to establish an accurate and 
efficient numerical simulation code for cavitating 
flows. The growth/decay of a single bubble and 
growth of bubbles with nucleation were successfully 
simulated by the proposed model. 

 
1. Introduction 

 
1.1 Cavitation in a cryogenic turbopump 

Flagship rockets of each country employ cryogenic 
LOX/LH2 engines which are superior in 
controllability, thrust and specific impulse. Its 
turbopumps are required both to operate at a high 
rotating speed for small size and high pressure output 
and to be low NPSH for a light fuel tank. Then, it is 
almost inevitable that cavitation occurs at the 
turbopumps. As a countermeasure against cavitation, 
an inducer impeller is set upstream of radial/axial 
main impellers of the turbopumps. At heavy load 
operation, however, unsteady cavitation occurs on the 
inducer impeller and suction performance becomes 
unstable[1]. Furthermore, cryogenic cavitation has 
larger thermodynamic effect than water one[2]. 
Therefore, cavitation of the turbopumps is very 
complex. Because it is difficult to predict and control 
cavitation theoretically[3]/ numerically[4], the 
turbopump is empirically designed based on visible[1] 
and/or trial[5] tests. There is a possibility that the 
turbopump can be optimized and improved on by the 
progress of prediction methods. 

Hence high accuracy numerical code is desired for 
easy optimizing, easy improving on, and reducing the 

number of trial manufacturing and experiments. 
Analyses on cavitation as a basis for developing the 
code have been proposed by a lot of researchers[6,7]. 
Numerical simulation on an inducer by using LES has 
also been reported by Fujii et al. [8] In this report, a 
simplified homogeneous flow model[9], which 
assumes that void fraction changes in proportion to 
the degree of super saturation, was employed as a 
cavitation model in contrast to the LES model for the 
accurate simulation of turbulent flow. Results on 
qualitative tendency such as tip cavitation was 
obtained, but qualitative results such as discharge 
pressure didn’t agree satisfactorily with experimental 
results. It seems that the imbalance between the 
simplified cavitation model and exact LES calculation 
causes insufficient quantitative accuracy. Therefore it 
is very important to develop a detailed model of 
cryogenic cavitation in a high speed turbopump. 

 
1.2 Numerical cavitation model for design of a 
cryogenic turbopump 

To build up a numerical model, it is important to 
manage both strict modeling of cavitation and 
reasonable computational time applicable for design. 
With attention to these points, modeling policies are 
indicated below. 

Gas phase disperses inside liquid phase in a 
turbopump because of a high speed flow, so the size 
of each dispersed gas phase is the order of μm to mm, 
and each shape approaches to spherical. Therefore, a 
cavitation flow in a turbopump is regarded as a 
bubbly flow, in other words, gas phase is assumed to 
be a cloud of spherical bubbles and liquid phase is 
assumed as a continuum containing bubbles. 

In process of bubble growth/decay, Matsumoto et 
al. reported that incondensable gas plays an important 
role on bubble phenomena just before collapse[10]. 
There is a little helium as incondensable gas in a 
cryogenic turbopump, however, a main purpose of the 
present study is to evaluate the pump performance, 
not to analyze microscopic phenomena like erosion. 
Therefore, incondensable gas is neglected and each 
bubble is made of pure vapor due to micro size. 

In regard to calculation models for the 
growth/decay of a vapor bubble, the inertia control 
model and the heat transfer control model are 
representable. In the former model, the bubble surface 
temperature is assumed to be equal to that of 
surrounding liquid, and the change of bubble radius is 
calculated based on Rayleigh-Plesset equation. In the 
latter model, the liquid pressure at the bubble surface 
is assumed to be equal to that of liquid far from 
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bubble, and the bubble growth is rate controlled by 
phase change determined by heat transfer in the liquid. 
The former model is valid when the bubble 
growth/decay is very rapid even if phase change 
occurs, and the latter is valid when the bubble 
growth/decay is very slow. In the present model, both 
mechanisms are incorporated rigorously in order to 
deal with various bubble behaviors such as bubble 
oscillation with phase change. 

Heterogeneous bubble nucleation model, which is 
that bubble nuclei are generated in relation to the 
degree of super saturation, is employed as the 
nucleation of cavitation bubble. 

It is important to take into account the slip velocity 
between bubbles and their surrounding liquid because 
bubbles move in a variable pressure field with 
external force like centrifugal force. Slip velocity 
depends on the bubble size, so it is necessary to 
distinguish bubbles with different sizes between the 
small bubble just after nucleation and the large bubble 
well grown. Therefore, bubble size distribution 
model[11], whereby bubbles are distinguished based on 
their mass, is employed. The advection velocities and 
growth/decay rates of bubbles with size distribution 
are computed by the model. 

In this paper, the above numerical model for 
cavitation was constructed, and it was applied to 
growth/decay of cryogenic cavitation bubbles in a 
liquid at various conditions of super saturation and 
subcool to verify the usefulness of the model. 

 
2. Bubble growth/decay in a stationary liquid 

 
Bubble radius is calculated by Rayleigh-Plesset 

equation taking into account the changes of bubble 
mass and bubble surface temperature due to phase 
change. Temperature field of liquid phase in the 
thermal boundary layer around the bubble is 
calculated simultaneously to determine the phase-
change rate and bubble surface temperature. Because 
the thermal boundary layer varies due to bubble 
oscillation, spherical numerical grids are laid on 
thermal boundary layer to solve the temperature 
distribution. 
 
2.1 Basic equation for bubble growth/decay 

One-dimensional spherical coordinate system on a 
bubble is considered as shown in Fig. 1. r is distance 
in radial direction, r=0 is at the center of a bubble, 
r=R is at the surface of a bubble, and r=Rout is the 
outer boundary of calculation domain. Because the 
temperature variation occurs mainly in the region 
r<2R in the case of steady heat conduction around a 
sphere[12], Rout is set at 2R. Evaporation/condensation 
rate for a bubble is calculated by temperature gradient 
at the bubble surface as follows, 

 
( )24G L B surfacew t R k dT dr Lγ π∂ ∂ = =  (1) 

 
Here w denotes mass of vapor bubble, L latent heat 

of vaporization, and TB liquid phase temperature 

around the bubble. Bubble growth rate, dR/dt, is 
governed by 
 
                                                     Table 1 Grids for 
                                                 thermal boundary layer 
 
 
 
 

 
 
Fig. 1 1D spherical grids 
for bubble growth/decay 
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Fig. 2 Temperature distribution 

in thermal boundary layer 
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⎝ ⎠
 (2) 

 
from Rayleigh-Plesset equation. By saturation 
condition, bubble temperature TG and pressure PG are 
obtained from bubble density ρG. 
 

ρG=3w/(4πR3) (3) 
TG=Tsat(ρG) (4) 
PG=Psat(ρG) (5) 

 
Local radial velocity c at r is derived from the 

surface velocity c|surface. 
 

( ){ }2 2 2 2 24surface G Lc c R r dR dt R R rγ π ρ= = −  (6) 
 

Temperature distribution TB is calculated by 
Lagrangian differential equation on the system 
moving at local speed c. 

 
2

2

1B L B

L L

DT k d dTr
Dt Cp r dr drρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (7) 

 
2.2 Analytical method for bubble growth/decay 

Firstly, the mass rate of phase change, γG, is 
calculated by using spatial 2nd order discretized form 
of eq. (1).  

 

Grid No. Position 
0 1.00000000R
1 1.00751880R
2 1.01503759R
3 1.02757487R
4 1.04848024R
5 1.08333907R
6 1.14146468R
7 1.23838668R
8 1.40000000R
9 1.60000000R
10 1.80000000R
11 2.00000000R

dR
dt

Bubble
(vapor)

Thermal
boundary
layer 
(liquid) 

Ambient
liquid 
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( ) ( ){ } ( )[2
1 2 1 24 2oldoldG L BR k L Tγ π= −Δ Δ Δ + Δ  (8) 

( ) ( ) ( ) ( ) ( ){ } ]1 2 1 2 1 2 1 1 21 2old old
B GT T+ Δ + Δ Δ Δ − Δ + Δ Δ Δ + Δ

where, TB(q), r(q) are values at grid point q, where q is 
index of grid as shown in Fig. 2. Grid interval 
Δ1=rold(1) −Rold, and Δ2=rold(2) −rold(1). Positive γG means 
evaporation.  

The bubble mass at the new time step, w, is 
obtained by explicit time marching of eq. (1) with 
time interval ΔtR. 

old
G Rw w tγ= + Δ  (9) 

 
where superscript, old, denotes previous time step. 

Bubble radius, R, is calculated from dR/dt by the 
following procedure based on eq. (2). 

nth stage: (dR/dt)n=(dR/dt)old+f( naR ,(dR/dt ) na ,bnΔtR) 
 Rn=Rold+ (dR/dt)n bnΔtR (10) 

where 
( )( ) [, , 2n

n n
a olda an R L SGf R dR dt b t P P RσΔ = − −  (11) 

( ){ } ( ) ( )
2

3 2 4n nn na aa aL L n R LdR dt R dR dt b t Rρ μ ρ⎤− − Δ⎦  
 
Applying Jameson’s factors, an=(old, 1, 2, 3), bn=(1/3, 

 4/15, 5/9, 1) for n=1 to 4, eq. (10) becomes 4 
stages Runge-Kutta method with temporal 2nd order 
accuracy. New values of ρG, TG and PG are obtained 
by eqs. (3) to (5). TB is calculated by implicit time 
marching using spatial 2nd order and temporal 1st 
order discretized equation derived from eq. (7). 

( ) ( )
( )

2

2

2oldB L B BB

R L L q q

T q T q k dT d T
t Cp r q dr drΔ ρ

⎧ ⎫− ⎛ ⎞ ⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 

(dTB/dr)q={g11TB(q−1)+g12TB(q)+g13TB(q+1)} (12) 
(d2TB/dr2)q={g21TB(q−1)+g22TB(q)+g23TB(q+1)}  
g11=−Δ2/{Δ1(Δ1+Δ2)},  g12=(Δ2−Δ1)/(Δ1Δ2),  
g13=Δ1/{Δ2(Δ1+Δ2)}, g21=2/{Δ1(Δ1+Δ2)},  
g22=−2/(Δ1Δ2),  g23=2/{Δ2(Δ1+Δ2)} 
Δ1=r(q) − r(q−1), Δ2=r(q) − r(q+1) 

 
Then, the following equation is obtained. 
a(q)TB(q−1)+b(q)TB(q)+c(q)TB(q−1)=d(q) (13) 
a(q)= −kL/(ρLCpL){g11/r(q)+g12},  
b(q)=1/ΔtR−kL/(ρLCpL){g12/r(q)+g22} 
c(q)= −kL/(ρLCpL){g13/r(q)+g23}, d(q)= old

BT (q)/ΔtR 
 

The above equation is organized into a matrix form. 

( ) ( ) ( )
( ) ( )

( ) ( )

( )
( )
( )

( )

01 0
1 1 1 1

2 2 2

1 1
10

B

B

B

max max

B max

T
a b c T

a b T

b q c q
T q

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

O
M
M

( ) ( ) ( ) ( )( ), 1 , 2 , 3 , , 1 , transpose
G max LT d d d d q T= −L  (14) 

 
Under TB(0)=TG and TB(qmax)=TL, TB is solved by 

diagonalizing the factor’s matrix. Due to implicit 
method, limitation of time interval can be ignored for 
TB calculation.  However, limitation of time interval is 
imposed due to bubble oscillation, and the time 

interval is determined by using natural frequency for 
vapor bubble by Prosperetti[13] as follows. 

( )1R na Rt f CΔ =  (15) 
( ) ( )31 2 3 2na p equ sat S L equf R P Rπ κ σ ρ= −  

 
where, the constant, CR, are set to 20, and the 
equivalent bubble radius Requ is given by a 
representative bubble size of the calculation. Index κP 
approaches to specific heat ratio γSHR for high 
frequency. In case of dtB/dr|surface>0 and large ΔtR, 
some bubbles unphysically become super critical 
bubbles, TG>critical temperature Tc, and dissolve into 
liquid. So, temperature change ΔTG during ΔtR is 
limited to be smaller than 10%Tc.  

ΔtR=γG,LimitL/{4πR2kL(dTB/dr)|surface} (16) 
γG,Limit=4πR3{ρsat(TG+0.1Tc)− old

Gρ }/3 
 

Because TB is calculated by Lagrangian framework 
based on eq. (7), the new value of TB for each old grid 
point corresponds to the temperature at the distance 
c(q)ΔtR away from position of old grid point. 
Therefore TB at the new grid points, as indicated in 
Table 2, is interpolated by cubic spline approximation. 
 
2.3 Result of a single bubble growth/decay in a 
stationary liquid at constant pressure 

The growth/decay behavior of a bubble in liquid 
nitrogen is shown in Fig. 3. A bubble with R0=10−6m 
and TG0=0.75Tc is put into the liquid at t=0. Liquid 
temperature and pressure far from the bubble are 
assumed to be constant with respect to time. Liquid 
pressure is set to balanced pressure with initial bubble 
pressure and surface tension of the bubble. Liquid 
temperature is parametrically changed from superheat 
to subcool conditions. Three kind of numerical grids 
for the thermal boundary layer are employed as 
followings. 
Type1:　1=0.0010R and 1000 grid points (uniform), 
Type2:　1=0.0075R and 133 grid points (uniform), 
Type3:　1=0.0075R and 11 grid points (non-uniform, 
see Table 1). 

Thermal boundary layer with thickness 10 %R0 
and linear temperature profile is assumed as an initial 
condition in order to give the same initial temperature 
profile independent of grid interval. Because results 
by type 1 and type2 agree well in all cases, it is 
verified that results by type 1 are rigorous. 
Calculation load, i.e. computational time, by type 3 is 
smaller by a factor of 90 compared with by type 1. 
The difference between the results by type 3 and 
rigorous ones by type1 is small (5% error at 
maximum), so it is verified that type 3 grids is enough 
to obtain bubble behaviors. 

Figure 4 shows results under the same condition as 
Fig. 3, except that liquid temperature is set to 
equilibrium temperature with initial bubble 
temperature and liquid pressure is parametrically 
changed from 50% to 1000% saturation pressure of 
equilibrium temperature. In case of superheat 

702



AJCPP 2008 
March 6-8, 2008, Gyeongju, Korea  

 

       0 5 10
0

2

4

6

8

     0 5 10
0

1

2

3

 
                                 Time  t [μsec]                                                                      Time  t [μsec] 
                       (a) constant TL = TBase + 10                                                    (b) constant TL = TBase + 2 
 

       0 5 10
0

1

2

     0 5 10
0

1

2

 
                                 Time  t [μsec]                                                                       Time  t [μsec] 
                      (c) constant TL = TBase + 0.5                                                       (d) constant TL = TBase 
 

     0 5 10 15
0

0.5

1

1.5

  0 2 4
0

0.5

1

1.5

 
                                  Time  t [μsec]                                                                     Time  t [μsec] 
                       (e) constant TL = TBase − 0.5                                                   (f) constant TL = TBase − 2 
 

Fig. 3 Comparison of results by using various numerical grids in case of constant TL, PL 
LN2, TBase = 0.75Tc, PBase = Psat(TBase), Δt=10−12, PL=PBase − 2σ/R0, TG0 = TBase, PG0 = PBase 

 

R
ad

iu
s  

R 
[μ

m
] 

R
ad

iu
s  

R 
[μ

m
] 

R
ad

iu
s  

R 
[μ

m
] 

R
ad

iu
s  

R 
[μ

m
] 

R
ad

iu
s  

R 
[μ

m
] 

R
ad

iu
s  

R 
[μ

m
] 

1000 grids 
133 grids 
11 grids(Inequality) 

703



AJCPP 2008 
March 6-8, 2008, Gyeongju, Korea  

 

     0 5 10
0

5

10

     0 5 10
0

1

2

3

4

 
                                 Time  t [μsec]                                                                      Time  t [μsec] 
                 (a) constant PL = 0.5PBase − 2σ/R0                                         (b) constant PL = 0.8PBase − 2σ/R0 
 

     0 5 10
0

1

2

  0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

 
                                Time  t [μsec]                                                                       Time  t [μsec] 
                   (c) constant PL = PBase − 2σ/R0                                           (d) constant PL = 2.0PBase − 2σ/R0 
 

   0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

  0 0.004 0.008 0.012
0

0.5

1

1.5

 
                                Time  t [μsec]                                                                        Time  t [μsec] 
                (e) constant PL = 5.0PBase − 2σ/R0                                         (f) constant PL = 10.0PBase − 2σ/R0 
 

Fig. 4 Comparison of results by using various numerical grids in case of constant TL, PL 
LN2, TBase = 0.75Tc, PBase = Psat(TBase), Δt=10−12, TL=TBase, TG0 = TBase, PG0 = PBase 
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(a) Bubble size distribution in some region 
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 (c) More accurate classification of NG on s 

 
Fig. 5 Bubble size distribution model 

 
conditions, i.e. smaller liquid pressure, the initial 
bubble growth is in condition of inertia control. In 
some cases oscillation occurs in the early period as 
seen in Fig. 4(b) by the following reason: Due to the 
initial rapid growth, evaporation is insufficient to 
support bubble growth, so the bubble pressure reduces 
and the bubble shrinks momentarily because inertia 
wins pressure difference between the bubble and 
liquid. After that the bubble pressure recovers and the 
bubble regrows. The amplitude gradually decreases 
and the bubble behavior shifts to moderate growth 
controlled by heat transfer. On the other hand in case 
of subcool conditions, the bubble just after insertion 
shrinks in condition of inertia control. Due to the rapid 
decrease of bubble radius, condensation is insufficient 
to keep bubble decay, so the bubble pressure rises and 
the bubble rebounds momentarily because inertia wins 
pressure difference between the bubble and liquid. 
After that the bubble pressure reduces and the bubble 
shrinks again. The amplitude of oscillation gradually 
decreases and the bubble behavior shifts to moderate 
decay controlled by heat transfer. Because the 
agreement between type 3 and the rigorous one 
(type1) is almost satisfactory, it is verified that the 
present numerical model is appropriate to simulate 
bubble behavior even in the case of growth/decay with 
oscillation. 

 
3. Bubble growth/decay by using BSD model 

 
Bubble size distribution model whereby bubbles 

are distinguished based on their mass, advection 
velocity are calculated, and growth/decay rates are 
computed using Eulerian framework, is employed. 
 
3.1 Basic equation for bubble growth/decay by 
BSD 

In order to employ bubble mass w as the measure 
of bubble size for Eulerian framework, an 
independent  
variable s is is introduced. 

s= 34 3GRπ ρ  (17) 
 

Namely, bubble mass axis s is defined in addition 
to the spatial axes x, y, z. It should be noted that the 
definition of s is the same as w, but w is dependent 
variable. An example of bubble distribution in a 
certain volume is shown in Fig. 5(a) by probability 
density function NG of bubble number density nG. as a 
function of s. Basic equations can be written as 
conservative equations of NG. 
 

( )0( )G G G GN t N s s wγ Π δ∂ ∂ + ∂ ∂ = −  (18) 
( ) ( )0( )G G G G G GsN t sN s s s w Nγ Π δ γ∂ ∂ + ∂ ∂ = − + (19) 
( ) ( )0 0( )G G G GRN t RN s R s wγ Π δ∂ ∂ + ∂ ∂ = −  (20) 

( ) ( )0 0( )G G G GRN t RN s R s wγ Π δ∂ ∂ + ∂ ∂ = −& & &  (21) 

( ) ( )0( )B G B G G L GT N t T N s T s wγ Π δ∂ ∂ + ∂ ∂ = −  (22) 
 

In these equations, ΠG denotes nucleation rate 
(number of generated bubbles due to nucleation per 
unit volume per unit time), w0 mass of one nucleated 
bubble, and γG evaporation (condensation for negative 
value) rate per one bubble of size s. Because the mass 
of one bubble increase with time due to the 
evaporation, bubbles move at speed γG in s direction. 
In the same way, sNG, R(s), R& (s) and TB(r, s) also 
move in s direction. 
 
3.2 Discretization of basic equation with respect to 
the bubble mass axis for BSD 

NG is discretized with respect to coordinate s, and 
conservative values nG,l , mG,l are defined for the 
discretized region (sub region) in the s coordinate. 

 
,

,
,

heavy l

light l

s
G l G

s
n N ds≡ ∫  (23) 

( )
,

,
, , , ,

heavy l

light l

s
G l G average l G l l G l

s
m sN ds s n w n≡ = =∫  (24) 

 
Conservation equation for nG,l , mG,l are derived 

from eqs. (18)(19). 
 

[ ] ,

,
, ,

heavy l

light l

s
G l G G G G lsn t N γ Π Φ∂ ∂ + = −  (25) 

[ ] ,

,
, 0 , , ,

heavy l

light l

s
G l G G G G l G l G lsm t sN w nγ Π Ψ γ∂ ∂ + = − +  (26) 

 
In order to solve new values of nG,l , mG,l by using 

eqs. (25)(26), the profile of NG in the sub region must 
be assumed, as shown in Fig. 5(b)(c), because the 
boundary values of each sub section are required in 
the 2nd term of left-hand side of eqs. (25)(26). It 
should be noted that the hatched area of the l th sub 
region in Fig. 5(b)(c) corresponds to nG,l based on eq. 
(23). A uniform profile shown in Fig. 5(b) is simple, 
however, the profile is determined uniquely only by 
nG,l obtained from eq. (25), and mG,l cannot satisfies 
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eqs. (24) and (26) simultaneously. On the other hand, 
by using a linear profile shown in Fig. 5(c), the profile 
is determined uniquely to satisfy eqs. (23)-(26). 
Therefore a linear profile is employed. The linear 
distribution has 3 patterns. Pattern 1 is the case of 
(slight,l+2sheavy,l)/3≤wl, Pattern 2 is the case of 
(2slight,l+sheavy,l)/3≤wl≤(slight,l+2sheavy,l)/3 and Pattern 3 
is the case of wl≤(slight,l+2sheavy,l)/3. 

 
Pattern 1: , ,3 2 ,min l heavy l max heavy ls w s s s= − =  

( )
( )
( ) { }

, , ,

,

, , ,

2 3

0

2 3( )

light l heavy l l heavy l

Gw light l

Gw heavy l G l heavy l l

s s w s

N s

N s n s w

+ ≤ <

=

= −

 (27) 

Pattern 2: , , , ,, ,min light l max heavy l heavy l light ls s s s s s s= = Δ = −  

( ) ( )
( )
( )

, , , ,

2
, , , ,

2
, , , ,

2 3 2 3

2 (3 2 )

2 (2 3 )

light l heavy l l light l heavy l

G light l G l l light l heavy l

G heavy l G l heavy l light l l

s s w s s

N s n w s s s

N s n s s w s

+ < < +

= − − Δ

= + − Δ

 (28) 

Pattern 3: , ,, 3 2min light l max l light ls s s w s= = −  

( )
( ) { }
( )

, , ,

, , ,

,

2 3

2 3( )

0

light l l light l heavy l

Gw light l G l l light l

Gw heavy l

s w s s

N s n w s

N s

< ≤ +

= −

=

 (29) 

 
In case of growth and wl≤(slight,l+2sheavy,l)/3, 

distribution is pattern 3 and there is no flux into class 
l+1 because of NG(sheavy,l)=0. After bubble growth, in 
case that wl becomes larger than (slight,l+2sheavy,l)/3, 
distribution is pattern 2 and flux into  class l+1 exists 
because NG(sheavy,l) gets a positive value. Namely, 
bubbles grow into heavier class only in case of 
patterns 1 and 2, and bubbles decay into lighter class 
only in case of patterns 2 and 3. This function 
prevents numerical diffusion on interclass 
growth/decay of bubbles. 
 
3.3 Calculation method for bubble growth/decay by 
BSD 

Figure 6 shows a flowchart of bubble growth/decay 
calculation by using BSD. 

Firstly, time intervals ΔtF, ΔtR, ΔtS, ΔtP are 
determined, where ΔtF is for the flow calculations, ΔtR 
for the calculations of Rayleigh-Plesset eq. and 
thermal boundary layer at each class at each grid, ΔtS 
for the interclass calculations in s direction (time 
marching of bubble size distribution) at each grid, ΔtP 
for the liquid temperature and pressure calculations at 
each grid. They have relationship of ΔtF ≥ ΔtP ≥ ΔtS ≥  
ΔtR. ΔtF is decided by CFL condition. ΔtP is decided 
by Eq. (15) and CR=5. ΔtS is decided by the following 
stability condition for Eq. (26). 

 
, , 1l G l S heavy lw t sγ ++ Δ ≤ , , , 1l G l S light lw t sγ −− Δ ≥  (30) 

 
Because γG,l is unknown before calculation shown 

in chapter 2, conceivable maximum γG,l is assumed 
and ΔtS is estimated. γG,l is proportional to dTB/dr|surface 

and Rl squared as shown in Eq. (1). In case of decay, 
because both dTB/dr|surface and Rl are decreasing during 
ΔtS, initial γG,l can be regarded as maximum. 
 

( ), 1 ,S l light l G lt w s γ−Δ ≤ −  (31) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6 Flowchart for BSD 
 

In case of growth, both dTB/dr|surface and Rl are 
increasing during ΔtS. Conceivable maximum Rmax,l is 
3

, 13 4heavy l Gs πρ+  at bubble mass sheavy,l+1 from stable 
condition of Eq. (20). dTB/dr|surface becomes larger 
because of increasing Rl , but it becomes smaller 
because of thermal diffusion. For γGmax,l calculation, it 
is enough to consider dTB/dr|surface only in case of 
increasing temperature gradient. New grid interval 

0,lr′Δ  is calculated from Δr0,l =r1,l−r0,l by using Eq. (6) 
wherein the evaporation term in the right hand side is 
ignored. 

 
0,lr′ =R0,l+dRl/dt ΔtS ≤ Rmax,l (32) 

1,lr′ =R0,l+ 0,lrΔ +dRl/dt { 2
0,lR /( 0,lR + 0,lrΔ )2}ΔtS (33) 

Calculate temporal change of liquid conservative values, 
α’Lρ’L, α’Lρ’Lu’L, α’Lρ’Lv’L, α’Lρ’Lw’L, α’Lρ’Le’L, bubble variables, 
nG,l, m G,l, Rl, R

•

l, TB,q,l  due to convection 

loopP 
loopS 

Start calculation by using values at time n as initial value
Calculate time intervals ΔtF, ΔtP, ΔtS, ΔtR for loopG, loopP, 
loopS, loopR. Calculate the number of calculation χP, χS, χR for 
loopP, loopS, loopR. 

Focus on each grid (only 1 grid in the present paper) 

Calculate Rl, R
•

l, TB,q,l after Δt’R by using calculation 
procedure in chapter 2 with Rl, R

•

l, TB,q,l as initial 
conditions and TL, PL as boundary conditions. Then 
calculate γG,l 

Focus on each class l 

number of cal.<χR 

Distinguish nucleation and calculate R0l, ΠG,l in case of 
nucleation 

Values at time n+1 are fixed 

Yes

Calculate ρL by αLρL, αL and calculate eL by αLρLeL, αLρL 

Calculate αG,l by Rl, nG,l and calculate αL=1-∑αG,l 

Calculate TL by eL and PL by ρL, TL using physical properties

loopR 

number of cal.<χS Yes

All girds No

Yes

loopG 

Do interclass calculation as shown in sections 3.1 and 3.2 
by results of loopR, γG,l, R0l, ΠG,l. Calculate nG,l, mG,l, Rl, R

•

l, 
TB,q,l after Δt’S 

By results of loopS, calculate ΦG,l, ΨG,l during Δt’P 

Calculate nG,l, mG,l, Rl, R
•

l, TB,q,l after Δt’P by results of loopS
and convection 

Calculate α’Lρ’L, α’Lρ’Lu’L, α’Lρ’Lv’L, α’Lρ’Lw’L, α’Lρ’Le’L after
Δt’P by results of loopS and convection 

number of cal.<χP 
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0,lr′Δ = 0,lrΔ −dRl/dt 0,lrΔ (2R0,l+Δr0,l) ΔtS/(R0,l+Δr0,l)2   (34) 
Because dRl/dt ≤ (Rmax,l−R0,l)/ΔtS is obtained from 

Eq. (32), eq. (34) is rewritten as 
0,lr′Δ / 0,lrΔ ≤ 1−(Rmax,l−R0,l)(2R0,l+Δr0,l)/(R0,l+Δr0,l)2   (35) 
Temperature gradient is inversely proportional to 

grid interval as indicated by eq. (1), so γGmax,l is given 
by  

γGmax,l/γG,l=(Rmax,l−R0,l)2/( 0,lr′Δ / 0,lrΔ ) (36) 
 
From eqs.(30) and (36), the stability condition of 

ΔtS is expressed by 
( )( )

( )
, 0, 0, 0,

2
, 1 0, 0,

2
, ,

0,

21 max l l l l

heavy l l l l
S

G l max l

l

R R R r
s w R rt

R
R

γ
+

⎛ ⎞− + Δ
−⎜ ⎟− + Δ⎝ ⎠Δ ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (37) 

 
Δt’P, Δt’S, Δt’R employed in the practical calculation 
are decided as 

Integer: χP=ceiling(ΔtF/ΔtP), Δt’P=ΔtF/χP (38) 
Integer: χS=ceiling(Δt’P/ΔtS), Δt’S=Δt’P/χS (39) 
Integer: χR=ceiling(Δt’S/ΔtR), Δt’R=Δt’S/χR (40) 
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Fig. 7 Continuous nucleation into the constant 

temperature and pressure liquid by BSD 
LN2, TBase = 0.75Tc, PBase = Psat(TBase), Δt=10−10 

 TL=TBase, TG0 = TBase, PL = PBase − 2σ/R0, PG0 = PBase 

s1=10−16 (si=10(i−49)/3) x 9 classes, R0 = 0.5μm 
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(b) liquid oxygen 
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(c) liquid hydrogen 
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Fig. 8 Temporal change of Rl, PL after bubble insertion at t = 0 into liquid at constant volume by BSD 

LN2, TBase =0.75Tc, PBase=Psat(TBase), TL0=TG0=TBase, PL0=PBase−2σ/R0, PG0=PBase, Δt=10−11[sec] 
s1=10−18 (si=10(i−55)/3) x 7 classes, R0=0.5μm x 1015個/m3 x (once at first) 
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Here, ceiling(a) is minimum integer equal to or greater 
than real number a. 

By using time intervals described above, flow field and 
bubble distribution are solved. Although the complete 
calculation procedure for cavitating flows is shown in Fig. 
6, only one grid without flow is treated in this paper. 

Therefore, the calculation of liquid conservative values 
and bubble variables due to convection is omitted, and as 
the first step of the present calculation, Rayleigh-Plesset 
equation and thermal boundary layer are solved χR times to 
get Rl, lR& , TB,q,l and γG,l for each bubble size class l as 
described in chapter 2.  

As the second step, the interclass calculation, that is, 
calculation of bubble distribution due to the bubble growth 
across the bubble class, are made χS times by Δt’S. By this 
calculation based on eqs. (25)(26), nG,l, and mG,l, are 
obtained. In case of super heat condition, ΠG is calculated 
beforehand. In addition, Rl, lR&  and TB,q,l are corrected 
taking into account the bubble growth/decay across the 
bubble class based on Eqs. (20)(21)(22). Further, number 
and mass of collapse bubbles, ΦG,l, and ΨG,l, are calculated. 

In the case of full calculation, the results of interclass 
calculation are corrected by results of convection.  

Finally, TG,l, αG,l and αl are calculated by 

( ) ( ){ }3, sat , sat , ,T T 3 4G l G l G l G llT m R nρ π= =  (41) 
( )3, , , sat ,4 3G l G l G l G llR n m Tα = π = ρ  (42) 

,1
1lmax

G l Ll
α α

=
+ =∑  (43) 

 
3.4 Continuous nucleation in a stationary liquid at 
constant pressure 

Figure 7 shows temporal change of nG,l, and αG,l 
distributions in case that a nitrogen bubble with R0=0.5μm 
and TG0=0.75Tc is put at every 10−10 sec into liquid 
nitrogen at constant temperature and pressure. Bubble 
nuclei gradually grow into heavier bubbles. As indicated 
by comparing results of 2μsec and 10μsec, steady state is 
attained after 2μsec in the bubble class less 10−14 kg 
because the bubble inflow from lighter class and the bubble 
outflow into heavier class becomes balanced. 
3.5 Temporal change of bubble radius and liquid 
pressure after a nucleation in a stationary liquid at 
constant volume 

Figure 8 shows temporal change of Rl, and PL in case 
that 1015 bubbles with R0=0.5x10−6m and TG0=0.75Tc are 
put at t=0 into liquid in 1 m3 closed vessel. Calculations are 
made for nitrogen, oxygen, hydrogen and water. Liquid 
pressure steeply increases just after the bubbles insertion 
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Fig. 9 Temporal change of cumulative αG,l, PL by using heterogeneous nucleation theory 

in superheat liquid at constant volume by BSD 
LN2, TBase =0.75Tc, PBase=Psat(TBase), TL0=TG0=TBase, PL0=0.1PBase−2σ/R0, PG0=PBase, Δt=10−11[sec] 

s1=10−18 (si=10(i−55)/3) x 31 classes, θ =175.0 [φ =1.08x10−5] 
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due to compression. Therefore, bubbles are also 
compressed by liquid, and their radius decreases. 
Resilience acts in case of radius less than equilibrium 
value, but inertia gets the bubbles smaller than the 
equilibrium radius. After the minimum radius, the 
bubbles expand, and inertia get them larger than the 
equilibrium radius inversely. These oscillations are 
gradually attenuated into balanced pressure and 
equilibrium radius by effect of viscosity. 

 
4. Bubble nucleation according to the 

heterogeneous nucleation theory 
 
The nucleation rate of bubble nuclei with radius 

R0=2σS/(Psat−PL) are given by heterogeneous 
nucleation theory[14].  

 
3

2

3 16 1exp
3 ( )

S S
G

m L sat L

d
m kT P P
σ πσ φΠ

π
⎛ ⎞

= −⎜ ⎟
−⎝ ⎠

 (44) 

( )32 3cos cos 4φ θ θ= + −  (45) 
 
where d is the number density of heterogeneous 
nucleation sites in the liquid, and θ is contact angle of 
liquid to the heterogeneous nucleation site. The super-
heat limit of liquid is controlled by the parameter φ. 
ΠG is used in Eqs. (25)(26). Dependent variables like 
Rl are averaged based on nG,l and ΠG for the bubble 
class which include R0. 
 
4.1 Bubble nucleation in a stationary liquid at 
constant volume: Effect of nuclei density d 

Figure 9 shows temporal change of cumulative αG,l 
and PL by changing number density of bubble seeding 
nuclei d. Terminal values of αG and PL are the same 
for different values of d. However, nuclei grow into 
large bubbles slowly in case of small d. On the other 
hand in case of large d, nuclei grow into small bubbles 
quickly and overshoots and oscillations occur due to 
large inertia. 

 
5. Conclusion 

 
A numerical code was developed by using a bubble 

size distribution model for the cavitating flow in 
turbopump of cryogenic rocket engine.  

Firstly, the bubble growth/decay calculations 
employ two rigorous methods, that is, both Rayleigh-
Plesset equation and the heat conduction equation for 
the thermal boundary layer around the bubble are 
solved numerically, and the mass rate of 
evaporation/condensation is evaluated exactly by the 
solution of temperature field. Secondly, the above 
calculations are combined with the bubble size 
distribution model which deals with the bubbles 
composed various sizes with Eulerian framework with 
respect to bubble size coordinate. It is verified that the 
present model can predict complex behaviors of 
bubble efficiently such as growth/decay with 
oscillation, and growth of bubbles with continuous or 

instantaneous bubble generation. Finally, in order to 
apply practical cavitating flow, it is confirmed that the 
present model predicts successfully the behavior of 
bubbles with heterogeneous nucleation and transient 
processes into an equilibrium state in a fixed volume 
corresponding to the calculation of one computational 
cell in full numerical simulations. 
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Nomenclature 

 
c：Velocity in r direction [m/sec] 
d：Number density of seeding nuclei [1/m3] 
e：Internal energy [J/kg] 

fna：Natural frequency [Hz] 
kB：Boltzmann constant = 1.38x10−23 [J/K] 

l：Grid number in s direction [−] 
m：Bubble mass per unit volume [kg/m3] 

mm：Mass of a molecule [kg] 
n：Bubble number density [1/m3] 
P：Pressure [Pa] 
q：Grid number in r direction [−] 
r：Axis in radial direction of bubble [m] 
R：Radius / Averaged radius in a class [m] 
R•

：Temporal change of R [m/sec] 
s：Axis in direction of bubble mass [kg] 
T：Temperature [K] 
w：Bubble mass / Averaged bubble mass in a class [kg]

α： Void fraction [−] 
γ： Evaporation/condensation rate per a bubble [kg/sec]

Δt：Time interval [sec] 
θ： Contact angle between nucleus and impurity [°] 

Π： Number density of nuclei [1/m3sec] 
ρ： Density [kg/sec] 

σS： Surface tension coefficient [N/m] 
Φ： Rate of bubble collapse [1/m3sec] 
φ： Index of limitation of superheat [−] 
χ： Number of calculation [−] 
Ψ： Mass rate of bubble collapse [kg/m3sec] 

Superscript / subscript 
0：Initial condition 
B：Thermal boundary layer around bubble 
G：Vapor phase 
L：Liquid phase 

old：Value before 1 timestep 
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