DOI QR코드

DOI QR Code

Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices

  • Wei, Bing (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University) ;
  • Wang, Yuanyuan (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University) ;
  • Wen, Yangbing (Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology) ;
  • Xu, Xingguang (Energy Business Unit, The Commonwealth Scientific and Industrial Research Organization) ;
  • Wood, Colin (Energy Business Unit, The Commonwealth Scientific and Industrial Research Organization) ;
  • Sun, Lin (Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology)
  • Received : 2018.06.01
  • Accepted : 2018.07.21
  • Published : 2018.12.25

Abstract

Nanocellulose was surface-functionalized toward the applications in enhanced oil recovery (EOR) as a green alternative. The focus of this paper is on the effect of this material based nanofluid (NF) on foam lamella stabilization through studying its bubble breakup dynamics and flow behaviors in constricted mircofluidic devices. The NF stabilized foam produced an improved flow resistance across the capillary largely due to the capillary trapped bubbles at the contraction. The "snap-off" caused the NF stabilized foam to produce finer textured bubbles, which can migrate readily forward to the deep porous media, as revealed by the pressure profiles.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Sichuan Province

References

  1. S. Thomas, Oil Gas Sci. Technol. 63 (2008) 9. https://doi.org/10.2516/ogst:2007060
  2. D.W. Green, G.P. Whillhite, Enhanced Oil Recovery, Society of Petroleum Engineers, Dallas, 1998.
  3. W. Pu, B. Wei, F. Jin, Y. Li, H. Jia, P. Liu, Z. Tang, Chem. Eng. Res. Des. 111 (2016) 269. https://doi.org/10.1016/j.cherd.2016.05.012
  4. O.V. Trevisan, P. Laboissiere, L.S. Monte-Mor, Paper SPE 165523 presented at SPE Heavy Oil Conference, Calgary, Canada, June 11-13, 2013.
  5. G. Giacchetta, M. Leporini, B. Marchetti, Appl. Energy 142 (2015) 1. https://doi.org/10.1016/j.apenergy.2014.12.057
  6. B. Wei, L. Romero-Zeron, D. Rodrigue, Ind. Eng. Chem. Res. 53 (2014) 16600. https://doi.org/10.1021/ie5014986
  7. A.T. Turta, A.K. Singhal, J. Can. Pet. Technol. 41 (1998), doi:http://dx.doi.org/10.2118/02-10-14.
  8. Y. Zhang, G. Xu, H. Bo, X. Li, Paper ISOPE-I-14-033 presented at The 24th International Ocean and Polar Engineering Conference, June 15-20, Busan, Korea, 2014.
  9. G.J. Hirasaki, J. Pet. Technol. 41 (1989) 449. https://doi.org/10.2118/19505-PA
  10. R. Farajzadeh, R.M. Muruganathan, R. Krastev, W. Rossen, Paper SPE-131297 presented Europec/EAGE Conference and Exhibition, Barcelona, Spain, June 14-17, 2010.
  11. T. Zhu, A. Strycker, C.J. Raible, K. Vineyard, Paper SPE-39680 present at SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 19-22, 1998.
  12. R. Farajzadeh, A. Andrianov, P.L.J. Zitha, Ind. Eng. Chem. Res. 49 (2009) 1910.
  13. A.D. Nikolov, D.T. Wasan, D.W. Huang, D.A. Edwards, Paper SPE-15443 presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 5-8, 1986.
  14. X. Xu, A. Saeedi, K. Liu, J. Pet. Sci. Eng. 138 (2015) 153.
  15. R. Farajzadeh, A. Andrianov, R. Krastev, G.J. Hirasaki, W.R. Rossen, Adv. Colloid Interface Sci. 183-184 (2012) 1. https://doi.org/10.1016/j.cis.2012.07.002
  16. M.M. Almajid, A.R. Kovscek, Adv. Colloid Interface Sci. 233 (2016) 65. https://doi.org/10.1016/j.cis.2015.10.008
  17. Y. Zhang, Z. Chang, W. Luo, S. Gu, W. Li, J. An, Chin. J. Chem. Eng. 23 (2015) 276. https://doi.org/10.1016/j.cjche.2014.10.015
  18. Z. Mitrinova, S. Tcholakova, N. Denkov, K.P. Ananthapadmanabhan, Colloids Surf. A 489 (2016) 378. https://doi.org/10.1016/j.colsurfa.2015.10.034
  19. F. Guo, S. Aryana, Fuel 186 (2016) 430. https://doi.org/10.1016/j.fuel.2016.08.058
  20. L. Hernando, H. Bertin, A. Omari, G. Dupuis, A. Zaitoun, Paper SPE-179581 presented at SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 11-13, 2016.
  21. M. Khajehpour, S.R. Etminan, F. Wassmuth, S. Bryant, Paper SPE-179826 presented SPE EOR Conference at Oil and Gas, Muscat, Oman, March 21-23, 2016.
  22. R. Singh, K.K. Mohanty, Energy Fuels 29 (2015) 467. https://doi.org/10.1021/ef5015007
  23. S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, J. Mater. Sci. 45 (2010) 1. https://doi.org/10.1007/s10853-009-3874-0
  24. Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110 (2010) 3479. https://doi.org/10.1021/cr900339w
  25. Z. Wang, W. Lin, W. Song, Appl. Energy 97 (2012) 56. https://doi.org/10.1016/j.apenergy.2011.11.077
  26. T. Sathvika, Manasi, V. Rajesh, N. Rajesh, Chem. Eng. J. 79 (2015) 38.
  27. W.L. Magalhaes, X. Cao, L.A. Lucia, Langmuir 25 (2009) 13250. https://doi.org/10.1021/la901928j
  28. S. Janardhnan, M.M. Sain, Bioresources 1 (2006) 176.
  29. D. Klemm, D. Schumann, F. Kramer, N. HeBler, M. Hornung, H.P. Schmauder, S. Marsch, Adv. Polym. Sci. 205 (2006) 49.
  30. B. Wei, H. Li, Q. Li, Y. Wen, L. Sun, P. Wei, W.F. Pu, Y.B. Li, Langmuir 33 (2017) 5127. https://doi.org/10.1021/acs.langmuir.7b00387
  31. B. Wei, H. Li, Q. Li, L. Lu, Y. Li, W. Pu, Y. Wen, Fuel 211 (2018) 223. https://doi.org/10.1016/j.fuel.2017.09.054
  32. S. Khodaparast, M. Magnini, N. Borhani, J.R. Thome, Microfluid. Nanofluid. 19 (2015) 1. https://doi.org/10.1007/s10404-014-1541-5
  33. C.J. Radke, T.C. Ransohoff, SPE Res. Eng. 3 (1986) 573.
  34. S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, AICHE J. 54 (2008) 1689. https://doi.org/10.1002/aic.11503
  35. P.A. Gauglitz, C.M.S. Laurent, C.J. Radke, Ind. Eng. Chem. Res. 27 (1988) 1282. https://doi.org/10.1021/ie00079a032
  36. I.A. Beresnev, W. Deng, Phys. Fluids 22 (2010) 012105. https://doi.org/10.1063/1.3294887
  37. W. Deng, M. Balhoff, M.B. Cardenas, Water Resour. Res. 51 (2016) 9182.
  38. P.A. Gauglitz, C.J. Radke, J. Colloid Interface Sci. 134 (1990) 14. https://doi.org/10.1016/0021-9797(90)90248-M
  39. Y. Wu, S. Fang, C. Dai, Y. Sun, J. Fang, Y. Liu, L. He, J. Ind. Eng. Chem. 54 (2017) 69. https://doi.org/10.1016/j.jiec.2017.05.019
  40. S. Roman, M.O. Abu-Al-Saud, T. Tokunaga, J. Wan, A.R. Kovscek, H.A. Tchelepi, J. Colloid Interface Sci. 507 (2017) 279. https://doi.org/10.1016/j.jcis.2017.07.092
  41. Y. Wen, B. Wei, D. Cheng, X. An, Y. Ni, Cellulose 24 (2016) 731.
  42. Q. Li, B. Wei, Y. Xue, Y. Wen, J. Li, J. Bioresour. Bioprod. 4 (2016) 186.
  43. T. Fu, Y. Ma, D. Funfschilling, H.Z. Li, Chem. Eng. Sci. 64 (2009) 2392. https://doi.org/10.1016/j.ces.2009.02.022
  44. S.M. Hosseininasab, P.L.J. Zitha, Energy Fuels 31 (2017) 10525. https://doi.org/10.1021/acs.energyfuels.7b01535
  45. J. Wang, A.V. Nguyen, S. Farrokhpay, Adv. Colloid Interface Sci. 228 (2015) 55.
  46. G. He, H. Tang, Geophysics, Petroleum Industry Press, Beijing, 2013.
  47. B. Wei, H. Li, L. Kong, J. Macromol. Sci. Phys. 55 (2016) 483. https://doi.org/10.1080/00222348.2016.1169574
  48. R. Cardinaels, A. Vananroye, P.V. Puyvelde, P. Moldenaers, Macromol. Mater. Eng. 296 (2011) 214. https://doi.org/10.1002/mame.201000305
  49. N. Aggarwal, K. Sarkar, J. Fluid Mech. 584 (2007) 1. https://doi.org/10.1017/S0022112007006210
  50. B. Wei, R. Wu, L. Lu, X. Ning, X. Xu, C.D. Wood, Y. Yang, Energy Fuels 31 (2017) 12035. https://doi.org/10.1021/acs.energyfuels.7b02458
  51. A.R. Kovscek, C.J. Radke, Colloids Surf. A 117 (1996) 55. https://doi.org/10.1016/0927-7757(96)03637-0

Cited by

  1. Application of Nanocellulose in Oilfield Chemistry vol.6, pp.32, 2018, https://doi.org/10.1021/acsomega.1c02095