DOI QR코드

DOI QR Code

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator

마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석

  • Ko, Sang-Cheol (Department of Mechanical & Automotive Engineering, Jeonju University)
  • Received : 2016.07.04
  • Accepted : 2016.09.02
  • Published : 2016.09.30

Abstract

A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

버블젯 타입 마이크로 엑츄에이터의 설계변수에 따른 유동특성에 관한 수치해석적 연구를 수행하였다. 수치 모델은 저장소로 부터의 잉크 유동과 기포의 성장 및 소멸, 노즐을 통한 액적의 토출과 리필 과정을 포함한다. 기포의 거동은 전체 엑츄에이터의 성능에 중요한 영향을 미치는 요소이기 때문에, 본 연구에서는 open pool 해석을 통하여 기포의 성장과 소멸 및 소멸시의 캐비테이션 현상에 대해 살펴보았다. 또한 마이크로 엑츄에이터의 노즐 형상의 변화, 챔버와 리스트릭터의 기하학적 변화에 따른 액적의 토출과 잉크 리필과정에 대한 수치예측을 수행하였다. 설계변수의 변화에 따른 수치해석의 결과는 마이크로 엑츄에이터의 성능특성을 예측할 수 있으며 또한 마이크로 엑츄에이터의 최적설계에 유용하리라 판단된다.

Keywords

References

  1. P. M. Burke and T. L. Weber, "Particle tolerant architecture," IS&T's NIP 16 International Conference on Digital Printing Technology, pp. 39-43, 2000.
  2. N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Norwood: Artech House, 2000.
  3. S. F. Pond, Inkjet Technology and Product Development Strategies, Carlsbad: Torrey Pines Research, 2000.
  4. P. O. Michael, V. D. Narayan, and J. D. Donald, "Drop generation process in TIJ printheads," IS&T's 10th International Congress on Advances in Non-Impact Printing Technologies, pp. 169-171, 1994.
  5. A. Asai, T. Hara, and I. Endo, "One-dimensional model of bubble growth and liquid flow in bubble jet printers," Japanese Journal of Applied Physics, vol. 26, no. 10, pp. 1794-1801, 1987. https://doi.org/10.1143/JJAP.26.1794
  6. A. Asai, S. Hirasawa, and I. Endo, "Bubble generation mechanism in the bubble jet recording process," Journal of Imaging Technology, vol. 14, pp. 120-123, 1988.
  7. A. Asai, "Application of the nucleation theory to the design of bubble jet printers," Japanese Journal of Applied Physics, vol. 28, no. 5, pp. 909-915, 1989. https://doi.org/10.1143/JJAP.28.909
  8. A. Asai, "Bubble dynamics in boiling under high heat flux pulse heating," Journal of Heat Transfer, vol. 113, pp. 973-979, 1991. https://doi.org/10.1115/1.2911230
  9. A. Asai, "Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer," Transactions of the ASME, vol. 114, pp.638-641, 1992.
  10. Flow Science Inc., Flow-3D User's Manual Version 7.7, Los Alamos: Flow Science Inc., 2000.
  11. S. C. Ko and N. S. Park, "Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator," Journal of Korean Society of Marine Engineering, vol. 38, no. 10, pp. 1232-1236, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.10.1232