• Title/Summary/Keyword: bubble displacement

Search Result 13, Processing Time 0.032 seconds

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF

Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis - (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Investigation of Spark Discharge in Water as a Source of Mechanical Actuation

  • Taylor, Nathaniel D.;Fridman, Gregory;Fridman, Alexander;Dobrynin, Danil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.258-258
    • /
    • 2014
  • Spark discharge in water generates shockwaves which have been utilized to generate mechanical actuation for potential use in pumping application. Discharge pulses of several microseconds generate shockwaves and vapor bubbles which subsequently displace the water for a period of milliseconds. Through the use of a sealed discharge chamber and metal bellow spring, the fluid motion can be used create an oscillating linear actuator. Continuous actuation of the bellow has been demonstrated through the use of high frequency spark discharge. Discharge in water forms a region of high electric field around the electrode tip which leads to the creation of a thermal plasma channel. This process produces fast thermal expansion, vapor and bubble generation, and a subsequent shockwave in the water which creates physical displacement of the water [1]. Previous work was been conducted to utilize the shockwave effect of spark discharge in water for the inactivation of bacteria, removal of mineral fouling, and the formation of sheet metal [2-4]. Pulses ranging from 25 to 40 kV and 600 to 900 A are generated inside of the chamber and the bellow motion is captured using a slow motion video camera. The maximum displacements measured are from 0.7 to 1.2 mm and show that there is a correlation between discharge energy input to the water and the displacement that is generated. Subsequent oscillations of the bellow are created by the spring force of the bellow and vapor in the chamber. Using microsecond shutter speed ICCD imaging, the development of the discharge bubble and spark can be observed and measured.

  • PDF

A STUDY OF AMELOBLASTOMA ON THE RELATIONSHIP BETWEEN HISTOPATHOLOGIC PATTERNS AND RADIOGRAPHIC CHARACTERISTICS (법랑모세포종의 조직병리학적 분류에 따른 방사선학적 소견에 관한 연구)

  • Choi Hyun Bae;You Dong Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.339-348
    • /
    • 1992
  • The purpose of this study was to evaluate the correlationship between histopathologic types of ameloblastoma and their radiographic appearances. The materials for this study consisted of 106 patients diagnosed as ameloblastoma both radiographically and histologically. The obtained results were as follows: 1. The incidence of ameloblastoma in male(60cases, 56.6%) was slightly higher than that in female (46 cases, 43.4%). The average age was estimated as 30.7 years with a range from 6 to 76 years. The second decade revealed the highest rate. 2. 106 ameloblstomas were histopathologically classified as 36 unicystic, 28 plexiform, 20 follicular, 14 acanthomatous, 7 granular cell, and 1 basal cell ameloblastoma. 3. Unilocular, soap-bubble appearance and scalloped margin were the radiographic appearances frequently seen in unicystic ameloblastoma. The predominant radiographic appearance of plexiform ameloblastoma showed unilocular radiolucency with scalloped margin. 4. 19.8%, 21 cases of ameloblastoma in this study showed containing tooth in their tumor mass by radiography. 5. Root resorption occured in 37 cases(34.9%) and tooth displacement in 7 cases(6.6%). Root resorption and tooth displacement occured in same patient were 24 cases(22.6%). 6. Recurrence occured in 21.7% and average year between initial treatment and recurrence were 2 years.

  • PDF

The Linkage between Spline/NURBS Free Surface and Shell Finite Element Analysis (Spline/NURBS 자유곡면과 쉘 해석의 연동)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.303-310
    • /
    • 2001
  • We propose the framework which directly links shell finite element to the free form surface geometric modeling. For the development of a robust shell element, a first order shear deformable shell theory and partial mixed variational functional are provided. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The Spline/NURBS is used to generate the general free form of parameterized shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis. Numerical examples are given in order to assess the accuracy of the performances of the proposed element.

  • PDF

Role of Liquid Vaporization in Liquid-Assisted Laser Cleaning (액막 보조 레이저 세척에서 액체 기화의 역할)

  • Lee, Joo-Chul;Jang, Deok-Suk;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.188-196
    • /
    • 2003
  • Liquid-assisted cleaning technology utilizing a nanosecond laser pulse is effective for removing submicron particulates from a variety of solid substrates. In the technique, saturated vapor is condensed on a solid surface to form a thin liquid film and the film is evaporated explosively by laser heating. The present work studies the role of liquid-film evaporation in the cleaning process. First, optical interferometry is employed for in-situ monitoring the displacement of the laser-irradiated sample in the cleaning process. The experiments are performed for estimating the recoil force exerted on the target with and without liquid deposition. Secondly, time-resolved visualization and optical reflectance probing are also conducted for monitoring the phase-change kinetics and plume dynamics in vaporization of thin liquid layers. Discussions are made on the effect of liquid-film thickness and dynamics of plume and acoustic wave. The results confirm that cleaning force is generated when the bubble nuclei initially grow in the strongly superheated liquid.

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 1. Model Development (난류전단 흐름에서의 기포응집에 관한 수치모의: 1. 모형의 개발)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1357-1363
    • /
    • 1994
  • A Monte-Carlo simulation model is developed to predict size distribution produced by the coalescence of air bubbles in turbulent shear f1ow. The simulation consists of generating a population of air bubbles into the initial positions at each time step and tracking them by simulating motions and checking collisions. The radial displacement of air bubbles in the simulation model is produced by numerically solving an advective diffusion equation. Longitudinal displacements are generated from the logarithmic flow velovity distribution and the bubble rise velocity. Collision of air bubbles for each time step is detected by a geometric test using their relative positions at the beginning of the time step and relative displacements during the time step. At the end of the time step, the total number of bubbles, their positions, and sizes are updated. The computer program is coded such that minimum storages for sizes and positions of bubbles are required.

  • PDF