• Title/Summary/Keyword: bridge pier

Search Result 487, Processing Time 0.025 seconds

Investigation on the Design of SRC Composite Columns (SRC 합성교각의 설계에 대한 고찰)

  • Shim, Chang-Su;Chung, Young-Soo;Min, Jin;Jung, In-Keun;Han, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.439-442
    • /
    • 2005
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, these columns were usually utilized for building structures and had higher steel ratio for small sections. For bridge pier applications, it is necessary to design the SRC columns having low steel ratio, which is nearly the same steel ratio as the normal RC columns. In this study, the evaluation of the composite columns with a core steel in term of the stiffness and the strength was investigated using experimental results. The effects of the steel ratio was also estimated using design provisions. The calculation of steel encased composite columns with multiple steel sections were performed and compared with RC columns.

  • PDF

A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge (교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구)

  • Park, Yeon-Soo;Lee, Byung-Geun;Kim, Eung-Rok;Suh, Byung-Chul;Park, Sun-Joon;Choi, Sun-Min
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Optimal design of nonlinear seismic isolation system by a multi-objective optimization technique integrated with a stochastic linearization method (추계학적 선형화 기법을 접목한 다목적 최적화기법에 의한 비선형 지진격리시스템의 최적설계)

  • Kwag, Shin-Young;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • This paper proposes an optimal design method for the nonlinear seismic isolated bridge. The probabilities of failure at the pier and the seismic isolator are considered as objective functions for optimal design, and a multi-objective optimization technique is employed to efficiently explore a set of multiple solutions optimizing mutually-conflicting objective functions at the same time. In addition, a stochastic linearization method is incorporated into the multi-objective optimization framework in order to effectively estimate the stochastic responses of the bridge without performing numerous nonlinear time history analyses during the optimization process. As a numerical example to demonstrate the efficiency of the proposed method, the Nam-Han river bridge is taken into account, and the proposed method and the existing life-cycle-cost based design method are both applied for the purpose of comparing their seismic performances. The comparative results demonstrate that the proposed method not only shows better seismic performance but also is more economical than the existing cost-based design method. The proposed method is also proven to guarantee improved performance under variations in seismic intensity, in bandwidth and in the predominant frequency of the seismic event.

Quasi-Static Tests for Seismic Performance of Circular RC Bridge Piers (단일주 원형 철근콘크리트 교각의 내진거동에 관한 준정적 실험)

  • 정영수;이강균;한기훈;박종협
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.55-66
    • /
    • 1999
  • Eight RC bridge plers have been made on a 1/3.4 scale model and have been tested in a quasi-static cyclic load so as to investigate their seismic performance. The ultimate objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete plers, which have been widely used for urban transportation facilities in Korea. Improtant test parameters are hoop ratio, axial load, load pattern, and etc. And noninear behaviors of test columns have been evaluated through their yield and ultimate strength, energy dissipation, ductility and load-deflection characteristics under quasi-static cyclic loads. From the quasi-static tests on 8 bridge piers, it is concluded that energy dissipation, ultimate strength and curvature for a given displacement factor ${\mu}={\Delta}/{\Delta}_y$ are higher for the seismically designed columns than for the nonseismically designed columns.

  • PDF

Estimation of Scour Depth at Bridnges and Comparative Analysis between Estimated and Measured Scour Depths (교량에서의 세굴깊이 산정 및 산정치와 실측치의 비교분석)

  • Yun, Yong-Nam;Lee, Jae-Su;Ho, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.477-485
    • /
    • 1997
  • Recent internal and external bridge failures due to pier and abutment scour have emphasized the need for better methods of scour depth estimation. This paper compares the hydraulic analysis of the Namhan River Bridge over the Namhan River using one-dimensional models. WSPRO & HEC-2, and the two-dimensional model. TABS-MD based on the procedures presented in HEC-18 published by the U.S. FEdral Highway Administration. A comparison of estimated scour depth for this research based on the results from both one-dimensional and two-dimensional model is presented. At the same time, field measurement has been performed before and after flood using sounding instrument. Fathometer (DE-719C). A comparison between estimated and measured scour depth at bridge is also presented. Result shows that there is all the difference between estimated and measured scour depth due to dissimilarity between laboratory and field conditions. Also, it is difficult to measure the maximum scour depth accurately due to refilling. Therefore development of scour measuring equipment which can be used during peak flood, and derivation of empirical model appropriate for internal river system seems urgent.

  • PDF

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique (기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측)

  • Choi, Sung-Uk;Choi, Seongwook;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1275-1284
    • /
    • 2021
  • This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.