• Title/Summary/Keyword: bridge influence area

Search Result 48, Processing Time 0.026 seconds

Numerical simulation approach for structural capacity of corroded reinforced concrete bridge

  • Zhou, Xuhong;Tu, Xi;Chen, Airong;Wang, Yuqian
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 2019
  • A comprehensive assessing approach for durability of reinforced concrete structures dealing with the corrosion process of rebar subjected to the attack of aggressive agent from environment was proposed in this paper. Corrosion of rebar was suggested in the form of combination of global corrosion and pitting. Firstly, for the purposed of considering the influence of rebar's radius, a type of Plane Corrosion Model (PCM) based on uniform corrosion of rebar was introduced. By means of FE simulation approach, global corrosion process of rebar regarding PCM and LCM (Linear Corrosion Model) was regressed and compared according to the data from Laboratoire $Mat{\acute{e}}riaux$ et $Durabilit{\acute{e}}$ des Constructions (LMDC). Secondly, pitting factor model of rebar in general descend law with corrosion degree was introduced in terms of existing experimental data. Finally, with the comprehensive numerical simulation, the durability of an existing arch bridge was studied in depth in deterministic way, including diffusion process and sectional strength of typical cross section of arch, crossbeam and deck slab. Evolution of structural capacity considering life-cycle rehabilitation strategy indicated the degradation law of durability of reinforced arch bridges.

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

Assessment of Visual Characteristics of Urban Bridges using Landscape Simulations - A Case Study of Yanghwaro in the Gyeongui Railroad Area - (경관시뮬레이션을 이용한 도시교량의 시각적 특성 평가 - 경의선 폐철구간 양화로 지역을 대상으로 -)

  • Chun, Hyun-Jin;Kim, Sung-Kyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • This study formed an estimation of the visual characteristics of urban bridges in Yanghwaro in the Gyeongui Railroad Area using a landscape simulation. Existing theses have formerly only suggested directions for design based on visual preference, but there is as yet no research on the practical process of landscape design. As a result, it is difficult to directly apply this to bridge design. This study found a potential bridge site and presented a direction for bridge design in order to improve the image of the surrounding urban landscape by surveying the visual effects and landscape preferences of different bridge types. An urban landscape was produced using a landscape simulation model and was made the background for the survey. Five bridge types--Girder, Arch, Truss, Cable and Suspension--were selected and presented. The shapes of the bridges were selected based on the floor plan. The results of this study are as follows. In a preference analysis, every bridge except Girder was evaluated as a positive influence. When rating the image, 'artificial' was rated significantly higher than other traits when assessing the background image. When the Girder Bridge was introduced, 'stable' and 'orderly' were both rated highly while 'stable', 'beautiful', 'orderly' and 'interesting' were high with the introduction of the Arch Bridge. 'Beautiful', 'stable', and 'orderly' were given a high value in the introduction of the Truss Bridge and every image except 'natural', 'harmony' and 'orderly' were highly rated in the introduction of the Cable Bridge. Further, every image but 'natural' was highly rated with the introduction of the Suspension Bridge. Based on the analysis of the landscape, there is a difference in preference before and after modeling a bridge type, while the bridge itself is an influence when it is the main object of the simulated scene. This study researched only the shape of the bridge as a part of the landscape but other elements such as stability, economics, and construction are also factors in the design of a bridge. Stability, economics, construction and other factors must be considered when selecting a bridge type in the future.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Analysis of Environmental Odor Factors for Dorim Stream in Gwanak-gu, Seoul (서울시 관악구 도림천 복개 정도에 따른 환경 악취 요인 분석)

  • Soyoung Park;Gokce Nur Ayaz;Heewon Kim;Hyungkee Yoon;Taehong Kwon;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.83-92
    • /
    • 2024
  • Background: In this study, we investigate the rapid increase in environmental odors and notable rise in civil complaints near Dorim Stream in the Gwanak-gu area of Seoul. Objectives: This study aims to identify the causal compounds responsible for environmental odors in the Dorim Stream and investigate the structural characteristics of the stream that influence odor generation. Methods: The research methodology involved setting up 41 sampling points, selecting panels for direct sensory evaluation to assess odor intensity, measuring dissolved oxygen and hydrogen sulfide concentrations, and using all-in-one low-temperature desorption gas chromatography (ATD-GC) and thermal desorption-gas chromatography-mass spectrometry (TD-GC/MS) analysis to identify odor-causing compounds. Results: The evaluation of Dorim Stream revealed that in areas with complete meandering, there were lower dissolved oxygen levels (4.5±2.67 mg/L) and higher odor intensity (4.0±0.92), while in partially meandering sections, higher dissolved oxygen levels (7.8±1.15 mg/L) and lower odor intensity (2.8±1.06) were observed. Hydrogen sulfide levels measured with sensors increased with higher temperatures, especially in the afternoon hours (12:00~14:00). Acetaldehyde was the dominant odor compound detected in both the Bonglim Bridge (0.4 ppm) area and Guro Bridge area (0.867 ppm), with concentrations more than twice as high near Guro Bridge. Odor-causing compounds identified by TD-GC/MS indicated a pungent, sulfurous odor in the Guro Bridge area and a musty odor in the Bonglim Bridge area. Conclusions: This study categorizes and analyzes the sources of odor in Dorim Stream in Seoul based on meandering patterns and the distribution of sewage facilities, highlighting the potential odor issues associated with combined sewage systems and sewer junctions and suggesting policy improvements.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

Longitudinal anti-cracking analysis for post-tensioned voided slab bridges

  • Zhou, Zhen;Meng, Shao-Ping;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • Post-tensioned concrete voided slab girders are widely used in highway bridge constructions. To obtain greater section hollow rate and reduce the self-weight, the plate thickness of slab girders are designed to be small with the adoption of flat anchorage system. Since large prestress is applied to the anchor end section, it was found that longitudinal shear cracks are easy to occur along the voided slab girder. The reason is the existence of great shearing effect at the junction area between web and bottom (top) plate in the anchor end section. This paper focuses on the longitudinal anti-cracking problem at the anchor end of post-tensioned concrete voided slab girders. Two possible models for longitudinal anticracking analysis are proposed. Differential element analysis method is adopted to derive the solving formula of the critical cracking state, and then the practical analysis method for longitudinal anti-cracking is established. The influence of some factors on the longitudinal anti-cracking ability is studied. Results show that the section dimensions (thickness of bottom, web and top plate) and prestress eccentricity on web plate are the main factors that influence the anti-cracking ability. Moreover, the proposed method is applied into three engineering examples to make longitudinal anti-cracking verification for the girders. According to the verification results, the design improvements for these girders are determined.

An Influence Analysis of the Social Capital and Participation Intention by the Regional Capacity Building for Rural Regional Development (농촌지역개발 지역역량강화사업이 사회적 자본형성과 사업참여의도에 미치는 영향)

  • Hwang, Young Seob;Cho, Tong Buhm
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.1
    • /
    • pp.43-56
    • /
    • 2021
  • Social capital is the basis for enabling regional development, and although it is the result of regional development that produces greater productivity through the combination of human and material capital, there is a lack of discussions in connection with rural development. This study saw that the local capacity building project affects the social capital of the local residents and such social network is realized through the rural area development project based on the participation of the residents. As a result of the analysis, the regional capacity building project has a positive influence on the social capital of the region and the willingness to participate in the project, and bridge-type social capital has shown a mediating effect on education and consulting fields. Only when local social capital, especially bridge-type social capital, is cultivated through the regional capacity building project can the project be transformed into one suitable for local conditions through active participation of residents.

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF