• Title/Summary/Keyword: breakdown rate

Search Result 353, Processing Time 0.025 seconds

The Effect of Contaminants and Surface Roughness on Tracking Aging (트랙킹 열화에 미치는 오손액과 표면거칠기의 영향)

  • Cho, H.G.;Kim, I.S.;Kang, T.P.;Ahn, M.S.;Park, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1673-1675
    • /
    • 1996
  • We have studied the effect of surface tension and flow rate of contaminants, wettability, frequency of applied voltage dependence of tracking breakdown. As the flow rate of contaminant is increasd, the surface resistivity is decreased, and the leakage current is increased, the time to tracking breakdown is decreased. It is found that time to tracking breakdown depends on the frequency of contaminant, that is difference of wettability. And as the frequency of applied voltage is increased, time to tracking breakdown decreased.

  • PDF

AC Electrical Treeing Phenomena in an Epoxy System with Low-chlorine BDGE at Various Electric Field Frequencies

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.324-328
    • /
    • 2013
  • An alternating current (AC) electrical treeing phenomena in an epoxy system with low chlorine BDGE (1,4-butanediol diglycidyl ether) was studied in a needle-plate electrode arrangement. To measure the treeing propagation rate and breakdown time, a constant AC of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the needle-plate electrode specimen at $130^{\circ}C$ in aninsulating oil bath. The treeing propagation rate of the DGEBA/high-chlorine BDGE system was higher than that of the DGEBA/low-chlorine BDGE system and the breakdown time of the system with high-chlorine BDGE was lower than that of the system with low-chlorine BDGE. These results implied that chlorine had a negative effect on the electrical insulation property of the epoxy system. As the electric field frequency increased, the treeing propagation rate increased and the breakdown time decreased.

Theoretical Studies on the Reactions of Acetate Esters with Substituted Phenolate Anion Nucleophiles$^1$

  • Im, Ung Muk;Kim, Wang Gi;Jeong, Hak Jin;Lee, Ik Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.252-256
    • /
    • 1995
  • Semiempirical MO calculations using the PM3 method are performed on the reactions of acetate esters with substituted phenolate anions. The mechanistic change from rate-limiting formation to breakdown of the anionic intermediate is shown to occur in the gas-phase, especially for meta-nitrophenyl acetate. However the mechanistic change-over takes place at a lower basicity ($pK_0$) of the anion nucleophile than found for the corresponding formate. This lowering of $pK_0$ has been ascribed to the electron donating effect of the methyl group in the acetate. For the reactions involving rate-limiting breakdown of the intermediate, the large Bronsted coefficients, ${\beta}_X({\beta}_{nuc})$, are expected in general, but the magnitude increases to a larger value and the pK0 is lowered accordingly, when an electron-donating nonleaving group, like $CH_3$, is present. This type of nonleaving group effect provides a necessary condition for the carbonyl addition-elimination mechanism with rate-limiting breakdown of the intermediate.

Analysis of Properties and Fabrication of $1000{\AA}$ silicon nitride MIM capacitor with High Breakdown Electric Field for InGaP/GaAs HBT Application (InGaP/GaAs HBT 적용을 위한 높은 절연강토의$1000{\AA}$ 실리콘 질화막 MIM capacitor제작과 특성 분석)

  • So, Soon-Jin;Oh, Doo-Suk;Sung, Ho-Kun;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.693-696
    • /
    • 2004
  • For InGaP/GaAs HBT applications, we have developed characterized MIM capacitors with thin $1000{\AA}$ PECVD silicon nitride which were deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $300^{\circ}C$ and had the capacitance density of 600 pF/$mm^2$ with the breakdown electric fields of 3073 MV/cm. Three PECVD process parameters were designed to lower the refractive index and then lower the deposition rate of silicon nitride films for the high breakdown electric field. At the PECVD process condition of gas mixing rate (0.92), working pressure (1.3 Torr), RF power (53 W), the AFM Rms value of about $1000{\AA}$ silicon nitride on the bottom metal was the lowest of 0.662 nmand breakdown electric fields were the highest of about 73 MV/cm.

  • PDF

Leaf Litter Breakdown of Emergent Macrophytes by Aquatic Invertebrates in the Lower Nakdong River (낙동강 하류에서 수서무척추동물에 의한 정수식물의 낙엽분해)

  • Kim, Gu-Yeon;Joo, Gea-Jae;Kim, Hyun-Woo;Shin, Geon-Seong;Yoon, Hae-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.172-180
    • /
    • 2002
  • Leaf litter breakdown rates of the Phragmites australis, Zizania latifolia and Typha angustifolia were determined at the lower Nakdong River from Nov. 1998 to Sept. 1999. The relationship between leaf litter breakdown of three and abundance of aquatic invertebrates was investigated. Aquatic invertebrates collected in the litterbags were 11 family, 11 species (mean density: $222\;ind./m^2$ , n = 792), and Chironomidae was dominant. Mean density of Chironomidae in the litterbags were different according to the aquatic plant species: Z. latifolia ($180\;ind./m^2$, n = 264) T. angustifolia ($187\;ind./m^2$, n = 264) P. australis ($95\;ind./m^2$, n = 264). The breakdown of Z. latifolia was the shortest, and that of T. angustifolia was shorter than P. australis. Overall, the breakdown rate at floating layer was faster than that of submerged layer in all of three species and differences of the breakdown rate between open bags and closed three species and differences of the breakdown rate between open bags and closed bags were not found.

The Breakdown Phenomena of N2 gas by RF Electric Field (라디오 주파수전계에 의한 질소가스의 브레이크 다운 현상)

  • 황기웅;노영수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.199-204
    • /
    • 1986
  • The breakdown phenomena of N2 gas by 13.56MHz electric field are very different from those under steady field. In this paper we analyzed the breakdown phenomena by using electron distribution function and diffusion equation. The second-order differential equation derived from the Boltzmann equation is solved for the electron distribution function. The ionization rate and diffusion coefficient are calculated using kinetic theory formulas. The breakdown condition is that the number of electrons produced by ionization equal the number diffusing to the walls of the discharge chamber. Theses theoretical breakdown electric fields are calculated by the computer and compared with the experimental values.

  • PDF

Effect of Amino Silane Coupling Agent on the AC Electrical Breakdown Phenomena of Epoxy/Layered Silicate Nanocomposite in Needle-plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.149-152
    • /
    • 2012
  • The effects of amino silane coupling agent on the AC electrical treeing and breakdown behaviors in an epoxy/layered silicate (1 wt%) were examined in needle-plate electrode geometry. A layered silicate was exfoliated in an epoxy base resin by using our AC electric field apparatus. To measure the tree initiation and propagation and the breakdown rate, an alternating current (AC) of 10 kV (60 Hz) was applied to the specimen in needle-plate electrode arrangement with a $30^{\circ}C$ insulating oil bath. In the epoxy/amino silane system, the tree initiation time was 11.5 times higher and the breakdown time was 17.9 times higher than those of the neat epoxy resin. The tree initiation time in the epoxy/layered silicate (1 wt%) system with the amino silane was 2.0 times higher, and the breakdown time was 1.5 times higher than those of the epoxy/layered silicate (1 wt%) system.

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

Characterization of small single photon avalanche diode fabricated using standard 180 nm CMOS process for digital SiPM

  • Jinseok Oh;Hakcheon Jeong;Min Sun Lee;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3076-3083
    • /
    • 2024
  • In this work, single photon avalanche diodes (SPADs) were fabricated using the standard 180 nm complementary metal-oxide semiconductor process. Their small size of 15-16 µ m and low operating voltage made it possible to easily integrate them with readout circuits for compact on-chip sensors, particularly those used in the radiation sensor network of a nuclear plant. Four architectures were proposed for the SPADs, with a shallow trench isolation (STI) guard ring and different depletion regions designed to demonstrate the main performance parameters in each experimental configuration. The wide absorption region structure with PSD and a deep N-well could achieve a uniform electric field, resulting in a stable dark count rate (DCR). Additionally, the STI guard ring was implanted to mitigate the premature edge breakdown. A breakdown voltage was achieved for a low operating voltage of 10.75 V. The DCR results showed 286.3 Hz per ㎛2 at an excess voltage of 0.04 V. A photon detection probability of 21.48% was obtained at 405 nm.

A Study on the Stability of Carbamide Peroxide Solution (Carbamide Peroxide 용액(溶液)의 안정성(安定性))

  • Rhee, Gye-Ju;Yu, Byung-Sul
    • YAKHAK HOEJI
    • /
    • v.28 no.6
    • /
    • pp.299-303
    • /
    • 1984
  • In order to eluciate the effect of humidity and organic solvent on the decomposition of carbamide peroxide, the kinetic study was carried out. The carbamide peroxide was prepared from urea and 30%-hydrogen peroxide. The accelerated stability analysis for carbamide peroxide crystal in various relative humidity, and for 10%-carbamide peroxide solution of organic solvents were investigated. Both humidity and temperature were important factors influencing the decomposition rate of carbamide peroxide crystal. The higher the humidity and temperature, the greater was the reaction rate. The breakdown rate of crystal was observed as an apparent zero-order, and was faster than the rate of decomposition in dilute propylene glycol, glycerine or sorbitol solutioos which were measured as an apparent first-order reaction. The more dilute to 10% the organic solvents of 10%-carbamide peroxide, the slower was breakdown rate. It is, therefore, useful in the aspects of stability and economics to substitute solvent of carbamide peroxide topical solution (USP XXI) with 10%-propylene glycol or glycerine instead of anhydrous glycerine.

  • PDF