Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.6.324

AC Electrical Treeing Phenomena in an Epoxy System with Low-chlorine BDGE at Various Electric Field Frequencies  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.6, 2013 , pp. 324-328 More about this Journal
Abstract
An alternating current (AC) electrical treeing phenomena in an epoxy system with low chlorine BDGE (1,4-butanediol diglycidyl ether) was studied in a needle-plate electrode arrangement. To measure the treeing propagation rate and breakdown time, a constant AC of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the needle-plate electrode specimen at $130^{\circ}C$ in aninsulating oil bath. The treeing propagation rate of the DGEBA/high-chlorine BDGE system was higher than that of the DGEBA/low-chlorine BDGE system and the breakdown time of the system with high-chlorine BDGE was lower than that of the system with low-chlorine BDGE. These results implied that chlorine had a negative effect on the electrical insulation property of the epoxy system. As the electric field frequency increased, the treeing propagation rate increased and the breakdown time decreased.
Keywords
Electrical treeing; Epoxy; Low-chlorine; Electric field frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: http://dx.doi.org/10.1002/pen.11592].   DOI
2 Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272-8].   DOI   ScienceOn
3 R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077].   DOI   ScienceOn
4 P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994) [DOI: http://dx.doi.org/10.1021/cm00046a026].   DOI   ScienceOn
5 C. Zilg, R. Mulhaupt, and J. Finter, Macromol. Chem. Phys., 200, 661 (1999) [DOI: http://dx.doi.org/10.1002/(SICI)1521-3935(19990301].   DOI   ScienceOn
6 T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 445 (2006) [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624291].   DOI   ScienceOn
7 J. J. Park, C. H. Lee, J. Y. Lee and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011) [DOI: http://dx.doi.org/10.1109/TDEI.2011.5931051].   DOI   ScienceOn
8 M. S. Bhatnagar, The Polymeric Materials Encyclopedia, ed. J. C. Salamone, CRC Press, Inc. (1996).
9 T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004) [DOI: http://dx.doi.org/10.1109/TDEI.2004.1349782].   DOI   ScienceOn
10 T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.239 (2004).
11 T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 704 (2002) [DOI: http://dx.doi.org/10.1109/TDEI.2002.1038658].   DOI   ScienceOn
12 R. Vogelsan, T. Farr, and K. Frohlich, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 373 (2006) [DOI: http:// dx.doi.org/10.1109/TDEI.2006.1624282].   DOI   ScienceOn
13 L. P. Witnauer, H. B. Knight, W. E. Palm, R. E. Koos, W. C. Ault, and D. Swern, Ind. Eng. Chem., 47, 2304 (1955) [DOI: http:// dx.doi.org/10.1021/ie50551a034].   DOI
14 K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).