Browse > Article

Leaf Litter Breakdown of Emergent Macrophytes by Aquatic Invertebrates in the Lower Nakdong River  

Kim, Gu-Yeon (Dept. of Biology, Pusan National University)
Joo, Gea-Jae (Dept. of Biology, Pusan National University)
Kim, Hyun-Woo (Dept. of Environmental Education, Suchon National University)
Shin, Geon-Seong (Dept. of Biology, Dong-A University)
Yoon, Hae-Soon (Dept. of Biology, Dong-A University)
Publication Information
Abstract
Leaf litter breakdown rates of the Phragmites australis, Zizania latifolia and Typha angustifolia were determined at the lower Nakdong River from Nov. 1998 to Sept. 1999. The relationship between leaf litter breakdown of three and abundance of aquatic invertebrates was investigated. Aquatic invertebrates collected in the litterbags were 11 family, 11 species (mean density: $222\;ind./m^2$ , n = 792), and Chironomidae was dominant. Mean density of Chironomidae in the litterbags were different according to the aquatic plant species: Z. latifolia ($180\;ind./m^2$, n = 264) T. angustifolia ($187\;ind./m^2$, n = 264) P. australis ($95\;ind./m^2$, n = 264). The breakdown of Z. latifolia was the shortest, and that of T. angustifolia was shorter than P. australis. Overall, the breakdown rate at floating layer was faster than that of submerged layer in all of three species and differences of the breakdown rate between open bags and closed three species and differences of the breakdown rate between open bags and closed bags were not found.
Keywords
breakdown rate; aquatic invertebrates; Phragmites australis; Zizania latifolia; Typha angustifolia; Chironomidae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Petersen, R.C. and K.W. Cummins. 1974. Leaf processing in a woodland stream. Freshwater Biol. 4: 343-368
2 Webster, J.R. and E.F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystem. Ann. Rev. Ecol. Syst. 17: 567-594
3 김구연. 2002. 낙동강 하구의 수생관속식물의 분포와 생장에 관한 연구. 동아대학교 석사학위논문. 51p
4 문형태, 표재훈. 1994. 낙엽의 분해과정에 따른 영양염류 및 화학적 구성원의 동태. 한국생태학회지 17(4): 501-511
5 Day, F.P. 1989. Limits on decomposition in the periodically flooded, nonriverine dismal swamp. Freshwater and Wetlands and Wildlife. Sharitz, R.R. and Gibbons, J.W., Eds., U.S. Department of Energy. 153p
6 윤일병. 1995. 수서곤충검색도설. 정행사. 서울
7 Andersen, F.Ø. 1978. Effect of nutrient level on the decomposition of Phragmites australis Trin. Arch. Hydrobio. 84: 42-54
8 Davis, C.B. and A.G. Valk. 1983. Uptake and release of nutrients by living and decomposing Typha glauca Godr. tissue at Eagle Lake, Iowa. Aquat. Bot. 16: 75-75
9 Kaushik, N.K. and H.B.N. Hynes. 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobio. 68: 465-515
10 Larsen, V.J., H.-H. Schierup. 1981. Macrophyte cycling of zinc, copper, lead, and cadmium in the littoral zone of a polluted and a non-polluted lake. II. Seasonal changes in heavy metal content of above-ground biomass anddecomposing leaves of Phragmites australis (Cav.) Trin. Aquat. Bot. 11: 211-230
11 윤일병. 1988. 한국동식물도감. 제30권 동물편 (수서곤충류). 문교부, 서울
12 Wallace, J.B. and R.W. Merritt. 1980. Filter-feeding ecology of aquatic insects. Ann. Rev. Entomol. 25: 103-132
13 강계원. 1995. 잊혀져가는 생물 거머리. 아카데미서적
14 부산지방기상청. 1999. 기상연보(1991~1999). 기상청
15 Cummins, K.W. and R.W. Merritt. 1984. An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall/Hunt Publishing Co. Dubuque, Iowa
16 Barko, J.W., D. Gunnison and S.R. Carpenter. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41: 41-65
17 Anderson, N.H. and R.J. Sedell. 1979. Detritus processing by macro invertebrates In stream ecosystems. Ann. Rev. Entomol. 24: 351-377
18 Neely, R.K. and C.B. Davis. 1985. Nitrogen and phosphorus fertilization of Sparganium eurycarpum Engelm. and Typha glauca Godr. stands. Emergent plant decomposition. Aquat. Bot. 22: 363
19 Cummins, K.W. 1974. Structure and function of stream ecosystems. BioScience. 24: 631-641
20 조강현. 1992. 팔당호에서 대형수생식물에 의한 물질생산과 질소와 인의 순환. 박사학위 논문. 서울대학교 대학원. 233p
21 Barko, J.W., D. Gunnison and S.R. Carpenter. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41: 41-65
22 Polunin, N.V.C. 1982. Processes contributing to the decay of reed (Phragmites australis) litter in freshwater. Arch. Hydrobio. 94: 182-209
23 부산광역시. 2001. 을숙도 생태공원 조성 기본 계획. 336p
24 Gopal, B. 1990. Ecology and Management of Aquatic Vegetation in the Indian Subcontinent. Kluwer Academic Publishers. Dordrecht, Netherlands
25 Mason, C.F. and R.J. Bryant. 1975. Production nutrient content and decomposition of Phragmites communis Trin. and Typha angustifolia L. J. Ecol. 63: 71-96
26 Gessner. M.O. 2000. Breakdown and nutrient dynamics of submerged Phragmites australis shoots in the littoral zone of a temperate hardwater lake. Aquat. Bot. 66: 9-20
27 Kim, H.W., G.J. Joo and J.H. Choi. 1996. Leaf litter processing and patterns of shredder distribution in headwater streams in southeastern Korea. Korean J. Ecol. 19(6): 529-541
28 Smith, R.L. 1995. Ecology and Field Biology. R.L. Smith. 5th ed. West Virginia Univ. ISBN. 10: 159-161
29 심재국. 1991. 온대낙엽수림내 주요 수종의 낙엽의 분해에 미치는 미생물 및 소동물의 영향. 박사학위 논문. 중앙대학교 대학원. 83p