Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.3.149

Effect of Amino Silane Coupling Agent on the AC Electrical Breakdown Phenomena of Epoxy/Layered Silicate Nanocomposite in Needle-plate Electrodes  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.3, 2012 , pp. 149-152 More about this Journal
Abstract
The effects of amino silane coupling agent on the AC electrical treeing and breakdown behaviors in an epoxy/layered silicate (1 wt%) were examined in needle-plate electrode geometry. A layered silicate was exfoliated in an epoxy base resin by using our AC electric field apparatus. To measure the tree initiation and propagation and the breakdown rate, an alternating current (AC) of 10 kV (60 Hz) was applied to the specimen in needle-plate electrode arrangement with a $30^{\circ}C$ insulating oil bath. In the epoxy/amino silane system, the tree initiation time was 11.5 times higher and the breakdown time was 17.9 times higher than those of the neat epoxy resin. The tree initiation time in the epoxy/layered silicate (1 wt%) system with the amino silane was 2.0 times higher, and the breakdown time was 1.5 times higher than those of the epoxy/layered silicate (1 wt%) system.
Keywords
Electrical treeing; Epoxy nanocomposites; Layered silicate; Amino silane coupling agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. W. Jang, C. M. Kang and D. C. Lee, J. Polym. Sci.: Part B, 39, 719 (2001) [DOI: 10.1002/1099-0488(20010315)].   DOI
2 D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: 10.1002/app.10166].   DOI   ScienceOn
3 L. Zhang, Y. Z. Wang, Y. Q. Wang, Y. Sui and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: 10.1002/1097-4628(20001209)].   DOI   ScienceOn
4 H. L. Tyan, K. H. Wei and T. E. Hsieh, J. Polym. Sci.: Part B, 38, 2873 (2000) [DOI: 10.1002/1099-0488(20001115)].   DOI
5 K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: 10.1002/polb.1108].   DOI   ScienceOn
6 X. Kornmann, "Synthesis and Characterisation of Thermoset-Clay Nanocomposites", Ph.D. dissertation from Lulea, Lulea Tekniska University, Sweden, pp. 13-17 (2001).
7 H. G. Jeon, H. T. Jung and S. D. Hudson, Polymer Bulletin, 41, 107 (1998) [DOI: 10.1007/s002890050339].   DOI   ScienceOn
8 L. Liu, Z. Qi and X. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999) [DOI: 10.1002/(SICI)1097-4628(19990214)].   DOI   ScienceOn
9 R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, Chem. Mater., 8, 2628 (1996) [DOI: 10.1021/cm960102h].   DOI   ScienceOn
10 J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010) [DOI: 10.1109/TDEI.2010.5595553].   DOI   ScienceOn
11 J. J. Park, C. H. Lee, J. Y. Lee and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011) [DOI: 10.1109/TDEI.2011.5931051].   DOI   ScienceOn
12 T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.237 (2004) [DOI: 10.1109/CEIDP.2004.1364232].
13 X. Zheng and G. Chen, IEEE Trans. Dielectr. Electr. Insul., 15, 800 (2008) [DOI: 10.1109/TDEI.2008.4543118].   DOI   ScienceOn
14 K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).
15 R. Vogelsang, R. Brutsch and T. Frohlich, Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, p.946 (2002).
16 Y. Chen, T. Imai, Y. Ohki and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 17, 1509 (2010) [DOI: 10.1109/TDEI.2010.5595552].   DOI   ScienceOn
17 T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006) [DOI: 10.1109/TDEI.2006.1624291].   DOI   ScienceOn