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The Breakdown Phenomena of N, gas by RF Electric Field
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Abstract

The breakdown phenomena of N gas by 13.56MHz electric field are very different from those under steady
field.

In this paper we analyzed the breakdown phenomena by using electron distribution function and diffusion
equation. The second-order differential equation derived from the Boltzmann equation is solved for the elec-
tron distribution function. The ionization rate and diffusion coefficient are calculated using kinetic theory for-
mulas. The breakdown condition is that the number of electrons produced by ionization equal the number dif-
fusing to the walls of the discharge chamber.

Theses theoretical breakdown electric fields are calculated by the computer and compared with the ex-
perimental values.

at 13.56 MHz become very different from those under

1. Introduction steady fields. As in the case of a steady field, the type
of gas or gas mixture and its total pressure play an

In this paper the breakdown phenomena of N; gas important role in the sequence of events that oceur.
at 13.56 MHz are analyzed. The ionization processes Since the breakdown at 13.56 MHz in our system—-
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at 13.56 MHz is a condition that the number of ioni-
zations by the collision between electrons and neutral
gas molecules equal to the number of the lost electro-
ns by diffusion.

The ionization rate and diffusion coefficient are
deduced using the distribution functions which is
derived from the Boltzmann equation and are combin-
ed with the diffusion equation to predict the
breakdown electric fields. These theoretical
breakdown electric fields are calculated by the com-
puter and compared with the experimental values.

2. Validity of Diffusion Theory in Qur
System
Breakdown is classified as mobility-controlled
breakdown, diffusion-controlled breakdown, attach-
ment-controlled breakdown, and recombination-
controlled breakdown according to the loss mechanism
of electron.

When an electric field with a frequency which is
above the cut-off frequency is applied to a discharge
chamber, electrons will disappear mainly by the diffu-
sion to the wall of the discharge chamber. In this case,
because there is no loss of of electrons by the drift to
the electrodes, we need not consider the secondary
emission of electrons from the electrodes. And elec-
trons will oscillate between the electrodes. According
to the Townsend theory, a breakdown occurs when the
number of electrons made by the ionization of neutral
gas molecules collided by the electrons equals to the
number of electrons lost by the diffusion to the wall
of discharge.

In our system, cut-off frequency D is found as

follows;

_e/m
vmtlw

Ke (1)

where, K. is electron mobility and vy is momentum
collision frequency, w is the frequency of the electric
field. Gap spacing, d, is 3.5 em and E; is about 40
Viem.

Collision frequency is equal to Nov. Here N is the den-
sity of N, gas and ¢ is collision cross section and v is
velocity. Using the data of the cross section of N, gas
2, we find that vm is about 5x10°P, where P is
pressure of N2 gas in Torr. fco becomes 1-10 MHz in
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the range of N, gas pressure 0.01-1 Torr and it is less
than the frequency of our R.F. generator, 13.56 MHz.
Thus the breakdown of our system can be considered
as diffusion controlled breakdown.

3. Boltzmann Equation

In the high frequency, the motion of ions is insignifi-
cant in comparision with that of the electrons because
electron’s acceleration is normally thousands of times
as great as ion’s accleleration. Therefore almost all the
electrical properties of an ionized gas at high frequen-
cies are determined by the ‘electrons. The electron
distribution function, F (v, r, t), is defined as the
number of electrons in a volume element of space, dx-
dydz, having velocities between v and v+dv. If F is
not a function of the space variables, the distribution
is uniform and if it is a function of speed and not of
velocity, it is isotropic.

In general the mean value of any quantity, Q (r, t),
is given by an integral involving the distribution func-
tion;

n(r, t) <Q(r, t>>:fF(r, v, OQ(r, Hidv

where, n(r, t) represents density.

The exact form of the electron distribution function
can be derived through consideration of the gain and
loss of electrons from an incremental volume in phase
space defined by d®rd3v. The equation governing
the net transfer of electrons from this volume is
known as the Boltzmann eguation and is expressed
aSB);
oF

C. ¢

3 +v.V.F+a-V.F

(2)
where V. is a gradient in x, y, z space and V. is a
gradient in velocity space and a is the acceleration, C
is the time rate of change of F by collisions.

The Boltzmann equation must be solved in order to
obtain the electron distribution function. Since no ex-
act solution to this equation is known, an approximate
solution must be sought. A technique which has been
used extensively considers that the solution can be ex-
pressed as the sum of an isotropic portion plus a small
anisotropic perturbation®’. Under such a considera-
tion it is logical to expand the distribution function in
spherical harmonics. The first two terms in such an
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expression are sufficient to give an accurate represen-
tation of F and lead to a satisfactory explanation of
the electrical phenomena in the plasma?’.

FZ%EFn'm(r, t)erln(g, ¢) (3)
T p— ]
where YJ(6, ¢)=(~ 1m,/ 22EL faoml
P (cos)em®

and Pm (cosg) are the associated Legendre
polynomials. The first few spherical harmonies in

terms of velocity components are;

Y3=1
V. \J S Vy
V=Y, V=%, Y=
; 22
Y§=- 2vE —Vi— VY
2v?
3V, oo VE-VE
Yi= 'v‘z——, Y5=3 o
_ VvVZ vay
Y;!=3 , Yii= )

We can express F in the following way;

F=F,. o+ V—"Fl,x+—VlF,,y+x—7‘F],z+---

F1

=Fy+ 22l (4)

The term F, represents the isotropic part and the
terms involving F'; express the small perturbations.

In a similar way, we now make an expression for the
collision terms.

Q1+

C C() + - (5)

By substituting (4) and (5) into (2), we can rewrite
Boltzmann equation involving zero and first order
terms as follows;

Cot VO =Ty Yop, 1 o8, O (VEF)
F F
Y% +VVFo+mEa %) ®

The electric field, E=E, exp(jwt), introduces
another variation. The phenomena which result from
the interaction of an alternating field and charged par-
ticles occur at frequencies nw/2x, where n may be 0,
1, 2, .... We therefore make a Fourier expansion in

time for each spatial component.
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With introduction of a Fourier expansion into
Boltzmann equation involving the spherical harmonies,
we can obtain the following set of coupled Eqs.;

Ci=% + §V-Fi+ S5 S(WE,-F)) (8-1)
F) | . ,
Ci= a;f +jwFi+ %VF% + 3?37 %(VZE;:'F?)
oF¢ oF} (8-2)
Cp=Zo v VFh+ o2 By 0) (8-3)
1
Ci=25 1 joF} + vWF} + SE, O (8-4)

These four equations can be simplfied by introducing
a new variable u=mv?2/2e (volts). Then we have

Co- T + 3 (vF+ & 2EEFD) o)
Cg)::,%iﬂwh“ﬁ (v Fi+ guA(uEp-Fl))

o1 % (vrps b, D) o0
Cl— ,aF‘ +JwF1+v(VF5+E aF0> (9-4)

4. Collision Integral

Since the collision integral plays a very important
role in the determination of the form of the distribu-
tion function, we must determine its explicit form and
we first consider elastic collision. Massey and
Burshop®’ have calculated the collision integral Co
and C: for elastic collisions. They considered two con-
tributions; the number of particles/s scattered out of
d® at d®r by collisions (a loss term) and the number of
particles/s scattered into d3v at d3r by collision (5) (6).
Their analysis lead to
m

™

u

2

C(), el T
2

50 (1 2 vnFo)
where m and M are the masses of the electron and
molecule, respectively.

The vector component is given more simply by

Cl.elz _VmFl
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The effects of inelastic collisions may be represented
by

Con=— hyFo

where h is the sum of the efficiencies of the inelastic
collision processes and v¢ is collision frequency.

5. Differential Equation for Distribution
Function

Introduction of the results of collision integral into
the set of differential equation (9) results in a coupled
set of differential equations. The term F} represents
the first of the
metrical part of the distribution function. In the
absence of a dc field there are no physical processes in
the discharge which this term would represent ”.
Therefore we may neglect F}.

Breakdown problems can generally be solved using
steady state distribution function, so we may set the
time derivative terms equal to zero. When we make

harmonics spherically sym-

these simplifications, equation (9) reduced to the

following.
3

M S vaFt)~hucFg

~X(v Fi+ L 2 E -Fl)) (10-1)

-3 1Ty gur° 1 -
V-Fl=—{ $7(EsFY) (10-2)
—ynF§=vVF} (10-3)

. aF3

_VmF}:JwF%‘}'VEpW (10-4)

Substituting Egs. (10-2) to (10-4) into (10-1), we have

viEZ 5 aF}
How (w22 S+ Lvemy)
3
=hucF3-3f 1 2 PvaFt) (11)

Since the spatial variation may be separated out, we
may replace F(u,x,y,z)=f(u)g(x,y,z). With this change,
we have a second order differential equation for £, the
energy varying component of the spherical term in the
distribution.

2 E? d
3m I du

3
(u2 Ym df >+
v+ du
3
Mg du 0= g2

3my, A2

)

(12)

(202)
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In order to solve equation (12), we must know the
expression of the collision frequencies. The collision
frequency is related to the collision cross section as v
=Nov, where N is the density of neutral atom at 1 Torr
pressure. The cross section 6(m?) may to found from
the collision probability P. by multiplying 2.82 +10-21,
provided that the mean free path is specified in
meters and the pressure in Torr. The collision pro-
bability is defined by setting 1P, p=1, where 1 is the
mean free path and p is the pressure.

The variation of the collision probability P. for elec-
trons with molecules of nitrogen as a function of elec-
tron energy is shown in figure 12’. As shown in
figure 2., we modified the data of Brode in the
straight lines for a convenience in calculation. Using
these data of the collision probability, we may express
the momentum transfer collision frequency as follows;

a. u<2.6 eV

Vm=5.519 X 107 pu? (35.88u— 4.29) (13-1)
b. 2.6<u<5.2 &V

ym=5.519x 107pu?(—21.54u+145)  (13-2)
c. 5.2<u<25 eV

Vim="5.519X 107 pu? (0.5u + 30.37) (13-3)
d. 25<u<36 eV

Ym=5.519 X 107puZ(—0.45u+54.36)  (13-4)
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Fig. 1. Probability of collision for electrons in
nitrogen.
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Substitution of the above value of collision frequencies
into equation (12) leads to the following Egs. .

\
\
\//\

SR NN ANl IS N SN RN S B e
40

U(eV)
0 10 30

Fig. 2. Probability of collision for electrons in N».

a) u<2.6eV
d3f +< + (53.82u—2.15)(7.26 — 3.05p*u(35.9u — 4.29)?)
du? 2u ' u(35.9u—4.29)(3.04p?u(35.9u—4.29)% + 7.26)
0 33

2 df
7 (3.05p%u(35.9u—4.29) +7.26)> 0
. 3.05p*u(35.9u—4.29)2+17.26 <

EZ
)f=0

35.63u—2.84
u(35.9u—4.29)

_ 14577.3
3.05p?u(35.9u— 4.29)?

(14-1)

b) 2.6<u<5.2¢V
d*f ., (—32.3u+72.5)(7.26—-3.05p*u(—21.54u+145)?)

2

du2+< 2u T u{—21.54+ 145)(3.05p%u( — 21.54u+ 145)2 4 7.26)
+833.(3.0p%u(~ 21 54u+ 145)2+7.26)) df

(3 05p%u(—21.54u+ 145)2+7.26) / —15.43u+96
E? \u(—21.54u~+145)
)f:O

(14-2)

14577.3
3.05p%u(—21.54u+ 145)

¢) 5.2<u<25eV

d2f +< +(0 .76u+15.18)(7.26 — 3p*u(0.5u+30.37)%)
du? 2u ™ u(0.5u+30.37)(3p%u(0.5+ 30.37) + 7.26)
0 33

(3.05p7u(0.5u-+30.37)2 + 7. 26))

(3 05p2u(0.5u+30.37)2+7.26) /  0.5u+20
E? \ u(0.5u+30.37)
)f=0

_ 14577.3
3.05p*u(0.5u+ 30.37)2

(14-3)

d) 25<u< 36eV

d?f ( 3 + (—0.68u+27.18)(7.26 — 3.05(p*u+54.36)2)
du? 2u ' u(—0.45u+54.36)(3.05p2u(—0.54u+ 54.36) %+ 7.26)
0 33

(3.05p%u(—0.45u+ 54.36)2 + 7. 26))%f—

+ (3.05p u(—0.45u+54.36)2 +7.26< —0.45u+36
E? u(—0.46u+ 54.36)
14577.3
"~ 3.05p%u(—0.45u+ 54 36)2> =0 (14-4)
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6. Breakdown Criterion of N. gas

The breakdown condition is that the number of elec-
trons produced by ionization equals the number of
electrons diffusing to the walls of the container. This
breakdown condition is combined with a solution of
the diffusion equation, the ionization rate and diffu-
sion coefficient to obtain an equation which results in
the breakdown electric field.

The ionization rate, v,, and diffusion coefficient, D,
are calculated using standard kinetic theory formulas
to yield the following equation.

df

“d">u:u;

u

nuizﬁmhiucftlﬂvzdv
t:21n<éé;)§Ez<Ag?vm
3 \m v+ @?
nD= /D " (Lv/3)f4nvidy

3
_2x(2e\s [Uuf
: <m)./0. Ym du

3
where h; :
E:
L : mean free path

(15-1)

(15-2)

efficiency of ionization
rms of electric field

The breakdown of the gas will materialize when
the production of newly ionized particles barely
exceeds or is just equal to the rate of their loss
by all deionizing processes, including diffusion.
Deionization can also occur by recombination and
attachment. When these two mechanism can be
neglected in our system, deffusion becomes the
only loss factor. For a cylindrical geometry, we
may write down a condition for breakdown using

Eq.(15) as follows;

2
E? <u3um df)
Y _ Um+(l)2 du/u=m 1
- ~ A (16)
‘/'um_11

where A\ is the characteristic diffusion length. For
a cylindrical geometry, the characteristic diffusion
lenght is espressed as follows!’;

Ar=(27) +(8)

2.405
R



R ; radius of electrode
d ; gap spacing

7. Theoretical and Experimental Result

The schematic presentation of our experiment is
shown in figure 3, in which the upper electrode is
powered and the lower one is grounded.

An RF power of 13.56MHz is applied to the elec-
trodes through the L-matching network and the Lang-
muir probe is used to measure the plasma parameters.

Under the assumption that the electric fieldis uniform
between the electrodes, we obtained the breakdown
electric field by measuring the breakdown voltage

with an oscilloscope.

P — e

[ﬁR}“ ]’ Matching
”fen(’ra'ﬂy" Cil‘CUiK [

T

‘ Cireuit

Thermometer
Pirani

(ruage |

Fig. 3. Discharge system.

Figure 4. shows the result of theory and experiment
of breakdown electric fields as a function of pressure.
We found the result of theory by solving Eq. (12) and
(13) through the numerical analysis using the Runge-
Kutta method.

As shown in figure 4., the electric fields have a
minimum value at a point where pressure is about 0.1
Torr. As pressure exceeds this value, electric field in-
creases because the mean free path decreases and
electrons can not gain sufficient energy from" fields.
As pressure decreases, electric field also increases
because electrons have a smaller chance for collision
with neutral molecules. In spite of small error, the
agreement between theory and experiment in figure
4. verifies the correctness of the approach.
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Fig. 4. Theory and experiment at 13.56MHz.

8. Conclusion

The breakdown electric fields of N» gas by 13.56
MHz electric field has been calculated theoretically on
the basis of the electron continuity equation, consider-
ing diffusion to the discharge walls as the only
removal process. This approach, containing no ad-
justable nitrogen discharge data or constant, and in-
volving only the ionization energy and collision cross
section, enables us to predict breakdown electric
fields. It has been derived from the electron distribu-
tion function given by kinetic theory, and the diffusion

equation.
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