• Title/Summary/Keyword: bracket

Search Result 785, Processing Time 0.03 seconds

A Study on the Appropriate Tunnel Bracket using in Korea Peninsula (국내 기후와 환경에 적합한 터널브래킷 선정에 관한 연구)

  • Jang, Kwang-Hun;Seo, Ki-Bum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1008-1012
    • /
    • 2014
  • Tunnel bracket is used in railway tunnel area in order to maintain insulation. Insulator performance evaluation test is proceeded refer to IEC 61109 but it is impossible to reflect all the field condition where insulator installed. Korea has clear four season in climatic condition and peninsula with lots of mountain in geomorphology condition. Tunnel bracket material which used in korea are butyl rubber, polymer and silicone. Most of them were installed without any internal climatic and geomorphology condition. According to the KORAIL operation data most of the insulator break down occurs in tunnel. So interval of inspection period is shorter then any other insulator and lots of maintenance cost incurs. Most major railway advanced country such as germany and japan maintain tunnel bracket with their own experience. For example visual inspection carried out with in one or two years and detailed inspection carried out between three to five years. This paper analyzed materials and shapes of tunnel bracket to in order to find optimized one in korea peninsula. Proposed bracket were tested under regulation and experience field data. Finally it was installed at the field and evaluated until now.

Corrosion Characteristics of TiN and ZrN Coated Orthodontic Brackets (TiN 및 ZrN 코팅된 교정용 브라켓의 부식특성)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • The dental orthodontic bracket requires good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. The objective of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance of orthodontic brackets using various electrochemical methods. Brackets manufactured by Ormco Co. were used, respectively, for experiment. Ion plating was carried out for coatings of bracket using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive Xray spectroscopy(EDS) and electrochemical tester. The corrosion potential of the TiN and ZrN coated bracket was comparatively high. The current density of TiN and ZrN coated bracket was smaller than that of non-coated bracket in 0.9% NaCl solution. Pit nucleated at angle of bracket slot.

Comparison of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 호선 간의 마찰 저항력의 비교)

  • Suh, Chung-Whan;Jung, Hye-Seung;Cho, Jin-Hyoung;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.116-126
    • /
    • 2005
  • The object of this study was to evaluate how friction that occurs during the sliding movement of an orthodontic archwire through orthodontic brackets is differently affected by variant designs and ingredients of brackets and archwires and bracket-archwire angles. In order to simulate the situations which could occur during orthodontic treatment with fixed appliances, 4 types of brackets (Gemini, a stainless steel twin bracket, Mini Uni-Twiu. a stainless steel bracket with a single bracket design and narrow mesio-distal width; Clarity, a metal-reinforced ceramic bracket; Transcend, a ceramic bracket) and 3 types of orthodontic archwires $(0.016',\; 0.016{\times}0.022'\;stainless\;steel,\;0.016'\;Nitinol)$ were used and the bracket-archwire angles were controlled as $0^{\circ},\;3^{\circ}\;6^{\circ},\;and\;9^{\circ}$ Gemini significantly show and the lowest static and kinetic frictions (P<0.001) Clarity showed the highest static and kinetic frictions with a bracket-archwire angle of $0^{\circ}$. and Transcend at $6^{\circ}\;and\;9^{\circ}$ (P<0.001). An $0.016{\times}0.022'$ stainless steel rectangular archwire significantly showed the highest static and kinetic frictions (P<0.01). The lowest static and kinetic frictions were observed when the bracket-archwire angles were $0^{\circ}\;and\;3^{\circ}$ with 0.010' stainless steel round archwires (P<0.01), and $6^{\circ}\;and\;9^{\circ}$ with 0.016 Nitinol (P<0.001). The static and kinetic frictions were increased as the bracket-archwire angles were increased (P<0.001)

A RELATIONSHIP BETWEEN VERTICES AND QUASI-ISOMORPHISMS FOR A CLASS OF BRACKET GROUPS

  • Yom, Peter Dong-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1197-1211
    • /
    • 2007
  • In this article, we characterize the quasi-isomorphism classes of bracket groups in terms of vertices using vertex-switches. In particular, if two bracket groups are quasi-isomorphic, then there is a sequence of vertex-switches transforming a collection of vertices of a group to a collection of vertices of the other group.

A STUDY OF THE SHEAR BOND STRENGTH OF METAL BRACKETS AND CERAMIC BRACKETS AND THE CONDITION AFTER DEBONDING (Metal bracket과 ceramic bracket의 전단 결합 강도와 debonding 상태에 관한 연구)

  • Yoon, Jung-Jin;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.327-343
    • /
    • 1992
  • Metal brackets and ceramic brackets were bonded to natural teeth, porcelain crowns and gold crowns After stored in artificial saliva solution for 72 hours at $37^{\circ}C$, the shear bond strengths were measured by Instron and compared with them, the bonding sites and bracket bases were examined by scanning electron microscope and light optical stereomicroscope. The results were as follows: 1. The shear bond strengths of the group which metal brackets were bonded to natural teeth and the groups which ceramic brackets were bonded to natural teeth and porcelain crowns were comparable to each other, the shear bond strength of the group which metal brackets were bonded to gold crowns was significantly low. 2. The bond failed predominantly at the bracket base/adhesive interface with the bulk of adhesive remaining on enamel in the group which metal brackets were bonded to natural teeth. 3. The bond failed consistently at the crown/adhesive interface with all of adhesive remaining on the bracket babes in the group which metal brackets were bonded to gold crowns. 4. The bond failed at the enamel or crown/adhesive interface with the bulk of adhesive remaining on the bracket bases in the groups which cramic brackets were bonded to natural teeth and porcelain crowns. 5. The shear bond strengths of the groups which ceramic brackets were bonded to porcelain crowns were not affected by etching time.

  • PDF

A STUDY OF ENAMEL DEMINERALIZATION RELATED TO BENDED ORTHODONTIC BRACKET AND IMPROVED METHOD OF ENAMEL DEMINERALIZATION: IN VIVO STUDY (BRACKET 부착에 의한 법랑질 표면의 탈회 및 개선 방법에 관한 연구)

  • Son, Han-Sin;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.165-174
    • /
    • 1995
  • The purpose of this study was to evaluated the improve method of demineralization and damage on the enamel stufece related to bonded orthodontic bracket. Enamel surface of the 40 Intact premolars were treated by aicd etching and various fluoride application methods and then maintained in the patient mouth of 3 months. After extraction of all the sampled premolars, enamel surfaces were evaluated by Scanning electron microscope. The obtained results were as follow. 1. Enamel surface relate to bonded orthodontic bracket showed demineralization and damage, slightly. 2. Group 6 treated by $2\%$ NaF iontophoresis presented and almost similarity to nomral enamel surface. 3. Group 2 treated by acid etching had demineralization and damage on the enamel surface much more than other groups treated by various fluoride application methods. 4. Demineralization and damage on the enamel surface caused by bonded orthodontic bracket is improved by various fluoride application methods.

  • PDF

Comparison of the frictional characteristics of aesthetic orthodontic brackets measured using a modified in vitro technique

  • Arici, Nursel;Akdeniz, Berat Serdar;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.45 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • Objective: The coefficients of friction (COFs) of aesthetic ceramic and stainless steel brackets used in conjunction with stainless steel archwires were investigated using a modified linear tribometer and special computer software, and the effects of the bracket slot size (0.018 inches [in] or 0.022 in) and materials (ceramic or metal) on the COF were determined. Methods: Four types of ceramic (one with a stainless steel slot) and one conventional stainless steel bracket were tested with two types of archwire sizes: a $0.017{\times}0.025$-in wire in the 0.018-in slots and a $0.019{\times}0.025$-in wire in the 0.022-in slot brackets. For pairwise comparisons between the 0.018-in and 0.022-in slot sizes in the same bracket, an independent sample t-test was used. One-way and two-way analysis of variance (ANOVA) and Tukey's post-hoc test at the 95% confidence level (${\alpha}$ = 0.05) were also used for statistical analyses. Results: There were significant differences between the 0.022-in and 0.018-in slot sizes for the same brand of bracket. ANOVA also showed that both slot size and bracket slot material had significant effects on COF values (p < 0.001). The ceramic bracket with a 0.022-in stainless steel slot showed the lowest mean COF (${\mu}$ = 0.18), followed by the conventional stainless steel bracket with a 0.022-in slot (${\mu}$ = 0.21). The monocrystalline alumina ceramic bracket with a 0.018-in slot had the highest COF (${\mu}$ = 0.85). Conclusions: Brackets with stainless steel slots exhibit lower COFs than ceramic slot brackets. All brackets show lower COFs as the slot size increases.

Three-dimensional evaluation of the transfer accuracy of a bracket jig fabricated using computer-aided design and manufacturing to the anterior dentition: An in vitro study

  • Park, Jae-Hyun;Choi, Jin-Young;Kim, Seong-Hun;Kim, Su-Jung;Lee, Kee-Joon;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.6
    • /
    • pp.375-386
    • /
    • 2021
  • Objective: To evaluate the accuracy of a one-piece bracket jig system fabricated using computer-aided design and manufacturing (CAD/CAM) by employing three-dimensional (3D) digital superimposition. Methods: This in vitro study included 226 anterior teeth selected from 20 patients undergoing orthodontic treatment. Bracket position errors from each of the 40 arches were analyzed quantitatively via 3D digital superimposition (best-fit algorithm) of the virtual bracket and actual bracket after indirect bonding, after accounting for possible variables that may affect accuracy, such as crowding and presence of the resin base. Results: The device could transfer the bracket accurately to the desired position of the patient's dentition within a clinically acceptable range of ± 0.05 mm and 2.0° for linear and angular measurements, respectively. The average linear measurements ranged from 0.029 to 0.101 mm. Among the angular measurements, rotation values showed the least deviation and ranged from 0.396° to 0.623°. Directional bias was pronounced in the vertical direction, and many brackets were bonded toward the occlusal surface. However, no statistical difference was found for the three angular measurement values (torque, angulation, and rotation) in any of the groups classified according to crowding. When the teeth were moderately crowded, the mesio-distal, bucco-lingual, and rotation measurement values were affected by the presence of the resin base. Conclusions: The characteristics of the CAD/CAM one-piece jig system were demonstrated according to the influencing factors, and the transfer accuracy was verified to be within a clinically acceptable level for the indirect bracket bonding of anterior teeth.