• Title/Summary/Keyword: box section

Search Result 328, Processing Time 0.027 seconds

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

Buckling Behavior of Plates Stiffened with the New Type Ribs (새로운 형태의 리브를 갖는 보강판의 좌굴거동)

  • Chu, Seok Beom;Lee, Pil Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.59-66
    • /
    • 2018
  • In this study, the parametric analysis for the buckling behavior of plates stiffened with the new type(${\Box}$ type) ribs was performed. Changes of the buckling capacity according to dimensions of ${\Box}$ type ribs show certain behaviors, so that the system to find the section of ${\Box}$ type ribs under the specific buckling capacity can be proposed. Applying this system to the steel deck of existing bridges, more economic sections of ${\Box}$ type ribs rather than that of closed ribs can be obtained. Therefore, the economic section of steel deck having the required buckling capacity can be designed by using the proposed system of ${\Box}$ type ribs.

Buckling Strength of Box-Shape Column with Corner Rounding (모서리 곡률이 존재하는 상자형 단면 기둥의 좌굴)

  • 한금호;한택희;김기언;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.325-331
    • /
    • 2004
  • Generally, the buckling of thin-walled structures has studied for rectangular sections or circular sections. Rectangular sections have small stiffness and circular sections have large stiffness when they are compared with rectangular sections for local buckling. But both of them have similar stiffness to column buckling. Therefore in this paper, we are going to analyze the local buckling for the box section with rounded comer and compare with rectangular section. Also we confirm that the rounded comer section has larger local buckling strength than rectangular section.

  • PDF

Shape Design of Crash Box with Absorption Performance against Impact (충돌에 대한 흡수 성능을 가진 크래쉬 박스의 형상설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.169-173
    • /
    • 2011
  • Crash box is introduced to vehicle design to improve the impact performance and reduce the damage of vehicle body at impact speed. The crash box behind bumper can absorb impact energy effectively to improve vehicle safety. Repair cost at collision accident can be cut down by use of this box. The configuration of car body must be designed by considering the characteristic of material due to the deformation of car body happened at impact. Many papers have been published about material of crash box all over the world. The study of crash box with tube expansion type has been going on Korea. This study is done by the simulation analysis about front collisions against 5 kinds of aluminum crash boxes with the basic structure of square section.

Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping (제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.297-302
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distortional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show an extensive parametric study on distortional behavior. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Investigation of residual stresses of hybrid normal and high strength steel (HNHSS) welded box sections

  • Kang, Lan;Wang, Yuqi;Liu, Xinpei;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.489-507
    • /
    • 2019
  • In order to obtain high bearing capacity and good ductility simultaneously, a structural column with hybrid normal and high strength steel (HNHSS) welded box section has been developed. Residual stress is an important factor that can influence the behaviour of a structural member in steel structures. Accordingly, the magnitudes and distributions of residual stresses in HNHSS welded box sections were investigated experimentally using the sectioning method. In this study, the following four box sections were tested: one normal strength steel (NSS) section, one high strength steel (HSS) section, and two HNHSS sections. Based on the experimental data from previous studies and the test results of this study, the effects of the width-to-thickness ratio of plate, yield strength of plate, and the plate thickness of the residual stresses of welded box sections were investigated in detail. A unified residual stress model for NSS, HSS and HNHSS welded box sections was proposed, and the corresponding simplified prediction equations for the maximum tensile residual stress ratio (${\sigma}_{rt}/f_y$) and average compressive residual stress ratio (${\sigma}_{rc}/f_y$) in the model were quantitatively established. The predicted magnitudes and distributions of residual stresses for four tested sections in this study by using the proposed residual stress model were compared with the experimental results, and the feasibility of this proposed model was shown to be in good agreement.

A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements (쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구)

  • Kim, Seung-Jun;Park, Jong-Sub;Kim, Sung-Nam;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF