• Title/Summary/Keyword: bounded control

Search Result 515, Processing Time 0.031 seconds

Time Discretization of the Nonlinear System with Variable Time-delayed Input using a Taylor Series Expansion

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2562-2567
    • /
    • 2005
  • This paper suggests a new method discretization of nonlinear system using Taylor series expansion and zero-order hold assumption. This method is applied into the sampled-data representation of a nonlinear system with input time delay. Additionally, the delayed input is time varying and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. Them mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. And 'hybrid' discretization scheme that result from a combination of the ‘scaling and squaring' technique with the Taylor method are also proposed, especially under condition of very low sampling rates. The computer simulation proves the proposed algorithm discretized the nonlinear system with the variable time-delayed input accurately.

  • PDF

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

A Design of a Robust Self-Tuning Controller in the presence of a Parameter Perturbation and Disturbance (매개 변수 섭동과 외란이 존재하는 강건한 자기 동조 제어기의 설계)

  • Park, Ju-Kwang;Hong, Sun-Hak;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.426-429
    • /
    • 1989
  • The robust self-tuning controller is designed which is guaranteed the asymptotic regulation and tracking in the presence of a bounded parameter perturbation. The global stability in the presence of a finite noise and disturbance is ensured. The controller has a error driven structure, and involves the common model of a disturbance and reference input in the internal model. The adaptive system tunes the controller parameters such that the quadratic performance index which involves a weighting factor is optimized.

  • PDF

A Study on the Improvement of System Performances of a Direct Adaptive Controller (직접 적응 제어기의 시스템 성능 개선에 관한 연구)

  • Cha, Jong-Hawn;Rhee, Hyung-Chan;Kim, Hong-Phil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.316-318
    • /
    • 1992
  • The proposed algorithm uses a modified adaptive law which consists of switching -modification, normalized augmented error and low-pass filtered signal of output tracking error, furthermore, the proportional term that is a product of the output tracking error and the bounded signal having an information of output tracking error is added to the conventional control law for improvement of robustness and performance of an adaptive system. For the arbitrary nth order system, mathematical analysis and computer simulation are used to demonstrate improvement of output error characteristics, guaranteeing boundedness of all signals in the overall system.

  • PDF

New Boundary-Handling Techniques for Evolution Strategies

  • Park, Han-Lim;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.165.1-165
    • /
    • 2001
  • The evolution strategy is a good evolutionary algorithm to find the global optimum of a real-valued function. Since many engineering problems can be formulated as real valued function optimization, the evolution strategy is frequently employed in engineering fields. However, in many engineering optimization problems, an optimization parameter is often restricted in the bounded region between two specified values, the minimum and the maximum limit, respectively. Since an offspring individual is generated randomly around a parent individual during mutation process of the evolution strategy, an individual outside the search region can be generated even if the parent is inside the search region. This paper proposes two new boundary-handling techniques for evolution strategies. One is the ...

  • PDF

Study and Implementation on Compensation of Step Jump Errors and Integrated Filter in the INS/GPS System

  • Hong, Woon-Seon;Choi, Sang-Wook;Park, Heung-Won;Kim, Chen-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.114.3-114
    • /
    • 2001
  • The pure navigation system using Inertial Navigation Unit(INU) which has very accurate short term stabilities but not long term gives rise to position errors propotional to time. On the contrary, Global Positioning System(GPS) which is bounded its errors to some fixed ranges shows higher accuracy in the long term, and lower accuracy in the short term than that of INS. Recently the integration of these two systems is one of the main topic in the field of navigation system. In this thesis, the implementation of kalman filter on the real time navigation computer and step jump error compensation method is suggested.

  • PDF

Development of a Washout Algorithm Using the Signal Compression Method

  • Kang, Eu-Gene;You, Ki-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.1-101
    • /
    • 2002
  • Vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, it is difficult to select the proper cutoff frequency of filters in washout algorithm. This paper introduces the signal compression method as an effective method to analyze the sim...

  • PDF

Deadzone Compensation of Positioning Systems using Fuzzy Logic

  • Minkyong Son;Jang, Jun-Oh;Lee, Pyeong-Gi;Park, Sang-Bae;Ahn, In-Seok;Lee, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.4-102
    • /
    • 2002
  • A deadzone compensator is designed for a positioning system using fuzzy logic. The classification property of fuzzy logic systems make them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates, formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a positioning system to show its efficacy. 1. Deadzone Compansation 2. XY positioning table 3. Fuzzy Logic 4. Actuator nonlinearity

  • PDF

Numerical Robust Stability Analysis and Design of Fuzzy Feedback Linearization Regulator

  • Park, Chang-Woo;Hyun, Chang-Ho;Kim, Euntai;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1220-1223
    • /
    • 2002
  • In this paper, numerical robust stability analysis method and its design are presented. L$_2$robust stability of the fuzzy system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linarization control gains is proposed.

  • PDF

THE RECURSIVE ALGOFITHM FOR OPTIMAL REGULATOR OF NONSTANCARD SINGULARLY PERTURVED SYSTEMS

  • Mukaidani, Hiroaki;Xu, Hau;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.10-13
    • /
    • 1995
  • This paper considers the linear-quadratic optimal regulator problem for nonstandard singularly perturbed systems making use of the recursive technique. We first derive a generalized Riccati differential equation by the Hamilton-Jacobi equation. In order to obtain the feedback gain, we must solve the generalized algebraic Riccati equation. Using the recursive technique, we show that the solution of the generalized algebraic Riccati equation converges with the rate of convergence of O(.epsilon.). The existence of a bounded solution of error term can be proved by the implicit function theorem. It is enough to show that the corresponding Jacobian matrix is nonsingular at .epsilon. = 0. As a result, the solution of optimal regulator problem for nonstandard singularly perturbed systems can be obtained with an accuracy of O(.epsilon.$^{k}$ ). The proposed technique represents a significant improvement since the existing method for the standard singularly perturbed systems can not be applied to the nonstandard singularly perturbed systems.

  • PDF