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Abstract: This paper considers the linear-quadratic optimal regulator problem for nonstandard sin-
gularly perturbed systems making use of the recursive technique. We first derive a generalized Riccati
differential equation by the Hamilton-Jacobi equation. In order to obtain the feedback gain , we must
solve the generalized algebraic Riccati equation. Using the recursive technique, we show that the solu-
tion of the generalized algebraic Riccati equation converges with the rate of convergence of O(e). The
existence of a bounded solution of error term can be proved by the implicit function theorem. It is
enough to show that the corresponding Jacobian matrix is nonsingular at ¢ = 0.

As aresult, the solution of optimal regulator problem for nonstandard singularly perturbed systems
can be obtained with an accuracy of O(e*). The proposed technique represents a significant improvement
since the existing method for the standard singularly perturbed systems can not be applied to the

nonstandard singularly perturbed systems.
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1. INTRODUCTION At first, we define
D= Iy 0 3
We consider a singularly perturbed linear time- - 0 ey, (3a)
invarant system
and
ry = Apzy + Apzy + Biu (la) i A A
A= A A (3b)
E.i?g = Agl.l’l + Agz.l‘g + Bz’u. (lb) B
B= [ B‘ ] (3¢)
2
where ¢ is a small positive parameter, z; € R™ and -
ry € R are states, u(t) € R™ is the control. The
system (la)~(1b) is called the nonstandard singularly Q = [ Q%} Q12 ]
perturbed systems if the matrix Aso is singular. @iz @
We find th timal trol u(t),t € [0,o00],which cT
. Ve n.( e optimal con u(t) [ ] _ [ plT [ o] (3d)
inimizes 1
J = miu{_i W(J.TQJ. +uT Ru)dt}, (2) We consider the linear-quadratic optimal control
w 2.y problem for the nonstandard singularly perturbed sys-

' tems, that is
In this paper we study the linear-quadratic optimal

regulator problem for nonstandard singularly perturbed Da(t) = Az(t) + Bu(t) (4)
systems by making use of the recursive technique. We
first derive a generalized Riccati differntial equation by
the Hamilton-Jacobi equation.

Now assume that the optimal perfomance index

for the problem takes the form V*(Dx(t),t) =

(1/2)zT DT P(t)x, when the initial variable is z(t) at

time f, where the (n; + n2) x (127 + ny) time-varying

2. GENERALIZED RICCATI ALGEBRAIC matrix P(t) satisfies the condition DT P(t) = PT(t)D.
EQUATION Define
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Liz(t), u(®),t) = (1/2)(zT Qz + uT Ru) (ha)
f(z(t),u(t),t) = Az + Bu (bb)
W (x(t),t) = 2T PT(2) (5¢)

sinse DTP = PTD.
By making use of Hamilton-Jacobi equation [7], i.e.

S = - min{L0),u).
W F(2(0), u(t). 1) (6)
we have
I'DTPr =

- In(il)i{;L'TQiL’ + uT Ru
u(d
+22T PT(Az + Bu)}  (7)
where (8V*/8t) = (1/2)2T DT Pz sinse DTP = PTD.
Carring out minimization on the right-hand side of
(7) gives
u™(1)

Substituting (8) into (7) vield

= —R7BTP(t)2(1) (8)

IDTPr = —2T[Q+ATP+PTA

-PTBR™ BT Pz 9)

The equation holds for all z(¢). Therefore, we obtain a
generalized Riccati differential equation

DTP=-Q-ATP—- PTA+ PTBR™'BT P(10a)

DTp=pP'D (10b)

Since the infinite-horizen problem can be considerd
as a limiting case of the finite-horizen problem, we can
obtain a generalized Riccati algebraic equation by let-
ting P(t) =0 .

ATP+ PTA-PTBRT'BTP+Q=0  (lla)

DTp=PTD (11b)

3. RECURSIVE ALGOLITHM

Consider the generalized Riccati algebraic equation
(11a)~(11b). Partitioning (11b) subject to (3a) we get
the followig equations

pTP=pP'D
I 0 Py Pis
S o el || Py P
_ PE Pg} I 0
| PL PL 0 eI
Pll €P27i
Ps1 Po

Py = P, Psy = P,

- p:[ (12)

Partitioning (11a) subject to (3b)~(3d) we also get
the followig equations

AT P+ PL A + AL, Py + PL Ay

—~PLS11 Py ~ PL Sy Py — PLS)1o Py
— PSP+ Qn =0 (13a)

EP21A11 -+ Pg-;Agl + Aclrjzpll -+ A%"2P21
—&Py1S11 Py — 5P215?2P21 - PZES?ZPU

— Pl S0Py +Qf, =0 (13b)
AL Pyy + PL Ay + AT, PT

+ePy Ar1s — P3, S22 Py

—ePhL ST, Pl — eP21S12Pos

—&* Py ST PH 4+ Q2 =0 (13¢)

where

S = BlR_lBlT
Si2 = B]R—IB;F
523 = BQR_lBg

Setting € = 0, we obtain the following equations

ATIPU + PlTlAu + A%Pm + Pg;Am
~P[S11 P11 — PJ522Py
— P S12Py — PSPy + Qui = 0 (14a)

PL Ay + AL Py + AL Py
~PhST, Py — Py S22 Por + Q1 = 0 (14b)

AL Pyy + PL Ass
—*AZQSQQPQQ 4+ Q202 =0 (14C)
The Riccati equation (14¢) will produce the unique
positive semidefinite stabilizing solution under the fol-
lowing assumption.

Assumption 1. The triple(Azq, Bz, Q22) is stabilizable
and detectable.

The matix Azy — S92 Py is nonsingular if Assump-
tion I hold. Therefore, we obtain the following 0-order
equations

PlTlA[)-{-A,({Pn-—p?;S()pll'FQ():O (153)
Pyy = —=Nj + N{ Py (15b)
AL, Poy 4+ PlyAsy — PESosPos + Qo =0 (15c¢)



where
Ay = Ay + NiAg 4 S1aNT 4+ N Soo NT
So = Su+NSEL+ SN + N SyuNT
Qo = Qu - N2A91 — ALNT — Ny Sy NT
NI = D;7QT,, NT =-D;TDT
Dy = Ap-— ‘512P22» Dy = Agy — S99 Py
Q12 = Q12+A51P22

The unique positive semidefinite stabilizing solution of
(15a) exists under the following assumption.

Assumption 2. The triple{(Aq, So, Qo) 1s stabilizable
and detectable.

Note. Although the expressions of the matrix Ay, Sy
and Qu contain the matrix Py, they do not depend on
it.

The 0-order solution is O(¢) close to the exact one.
We define errors as

Py = P +<En (16a)
Py = Py +¢Ey (16b)
Pyy = Pyy + £ Egy (16¢)

The O(c*)aproximation of E will produced the
O(e*+1) approximation of the required matrix P, which
i1s why we are interested in finding equations for the er-
ror term and a convenient algorithm for its solution.
Subtracting (15a)~(15¢) from (13a)~(13c) and using
(16a)~(16c) we arrive at the following expression for
the error equation.

EIDy+DTE,, + VIHT + H\V

—VTH3V —~cHy; =0 (17a)

ELDs+ ELDy+ DYEyp — H, =0 (17b)

EL,T:_,D4+DZEQ~_)-—H;;:0 (17(‘)

where

# = -AL P+ PLs, P+ P SLP]
+e(EL 810 + EX S0y Ey)

Hy = ELSHEN 4+ ELSyEy,
+E1qu11E)1 + ET] g‘{,El]

Hy = —*17 PT — Py Ay + ¢ P>1\11P>1
+E;, )JE):+P)151 24
+Pf *T PT

and

Dy = Dy-D.D7'Ds. V= D;'Dy

[)1 = :111 bt ﬁ';rlpn - Sljj_;lb'_)l

Dy = Ao = STPy =S4, Py
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We proposed the following algorithm.

. e .
E(1J1+1) Dy + DgE§]1+1) —

~VTHET ~HPV + VITHPV + cHY) (18a)
EYTT D, 4 E§{+”TD4 + DTEGTY = HU(18b)
Eg€+1)TD + D4 E(]+1) }{(1) (lSC)

where
WY = —ATLPE+ PLsu P + PSP
(E(J)T 512}7(]) + E(J)F HHE(]))
ng) E(J)T S ESJI) +E(])sz Egll)
+E0)" 51285 + BR)T ST B

Hg") = Aclr2P21 P21A12

+»P21b11.P21 + EE(J)T HQQE )
+P21512P2" + Py, ST, Py

4. MAIN RESULTS

The following theorem indicates the convergence fea-
tures of algorithm (18a)~(18c).

Theorem 1. Under stabilizability-detectability con-
ditions, imposed in Assumption 1 and 2, the algorithm
(18a)~(18¢c) converges to the exact solution of E with
the rate of convergence of O(e), that is

I|IE — E®)j = 0(*), (k=1,2,--) (19)
or equivalently
I\E - E(k+1)” = 0(¢)||E —- E‘(")H (20)
where
£y By ] (%) BY By
E= CE® = 11 21
[ Ele 22 Egt)T Egg)

Proof. As a starting point we need to show the exis-
tence of a bounded solution of E in neighbourhood of
¢ = 0. To prove that by the implicit function theorem,
it 1s enough to show that the corresponding Jacobian is
nonsingular at ¢ = 0. The Jacobian is given by

Ji1 0 0
Jezo = Jor Jao Jaa (21)

where, using the Kronecker products representation we
have

Jiin = I Deg+1I® D({
Jag = I5 Dy
Jaz = [ Dy+17 DqT



The matrix Dy is nonsingular since Assumption 1 hold.
The matix Ay — SoPq; 1s nonsingular if Assumption 2
hold. Therefore, we obtain the following equation.

Ag = SoPu

= A+ ViAol + S NT 4 N Sy NT
—(S11 4+ Vi SL + SpNT + N A*'z;’]\’lT)Pu

= Ay + Nidsy ~ S Py — NiST, Py
+S1u NI 4+ N Sy NT
—S$19NE Py — N Sy NT Pry

= A1y — S1 Py + Ni(Aa — S P
~S12(—=N3 + N{ Py)
—N1Sp(~NT + NI Pyy)

= A1 — S11 Py — S Py
+N (A9 — SI‘I;PU — S22 Pay)

=D — D;D;TD3 = Dy

The matrix Dy is stable also. Thus, for ¢ sufficent small
enough the Jacobian is nonsingular. Therefore we can
achieve the O(e¥) approximation of E by performing
only k iteration for algolihtm (18a)~(13c).

5. A NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed
algorithm (18a)~(18c), we have run a simple example.
We consider a nonstandard singularly perturbed sys-
tems of the form [5]

i‘l _ 0 1 Iy 0 ) oy
=l lln )] e
wiht perfomance index
1 [ 2 2 .
J= 3/, (x4 23 +u')dt (23)

The entries show the results obtaind for small parameter
£ = 0.01. In the Table 1, the results are presented for
the P approximation.

Tab.1. Value of P when ¢ = 0.01

J Pry Py Py

1 1.41414 2.41414 1.0

2 1.43828 241414 1.02414
3 1.43799 2.41414 1.02385
4 1.43799 241414 1.02386
) 1.43799 241414 1.02386
6 1.43799 241414 1.02386
7 1.43799 241414 1.02386

By using proposed recursive algorithm, we can get the
following solutions.

g

ry

=~ 241414 1.02356 | [ (24)

Upy
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Where, Yue-yun Wang’s presented for the exact follow-
g solutions.

Ul = — | 2.4142 1.0239 ] [ ‘fl ] (25)
2o
It can be seen thet the w},, converge to exact solution
ll:’,’,'(l'

6. CONCLUSIONS

This paper presented a recusive algorithm for non-
standaed singularly perturbed systems. Using the re-
cursive algorithm, the solution of optimal regulator
problem for nonstandard singularly perturbed systems
can be obtained with an accuracy O(e¥). As a result,
the proposed technique represents a significant improve-
ment since the existing method for the standard singu-
larly perturbed systems can not be applied to the non-
standard singularly perturbed systems.
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