THE RECURSIVE ALGORITHM FOR OPTIMAL REGULATOR OF NONSTANDARD SINGULARLY PERTURBED SYSTEMS

Hiroaki Mukaidani*, Hua Xu** and Koichi Mizukami**

*Graduate School of Engineering, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan 739

**Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan 739

Abstract: This paper considers the linear-quadratic optimal regulator problem for nonstandard singularly perturbed systems making use of the recursive technique. We first derive a generalized Riccati differential equation by the Hamilton-Jacobi equation. In order to obtain the feedback gain , we must solve the generalized algebraic Riccati equation. Using the recursive technique, we show that the solution of the generalized algebraic Riccati equation converges with the rate of convergence of $O(\varepsilon)$. The existence of a bounded solution of error term can be proved by the implicit function theorem. It is enough to show that the corresponding Jacobian matrix is nonsingular at $\varepsilon = 0$.

As a result, the solution of optimal regulator problem for nonstandard singularly perturbed systems can be obtained with an accuracy of $O(\varepsilon^k)$. The proposed technique represents a significant improvement since the existing method for the standard singularly perturbed systems can not be applied to the nonstandard singularly perturbed systems.

KeyWords: Nonstandard singularly perturbed systems, Generalized algebraic Riccati equation, Recursive algorithm, Implicit function theorem.

1. INTRODUCTION

We consider a singularly perturbed linear time-invarant system

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u \tag{1a}$$

$$\varepsilon \dot{x}_2 = A_{21} x_1 + A_{22} x_2 + B_2 u \tag{1b}$$

where ε is a small positive parameter, $x_1 \in R^{n_1}$ and $x_2 \in R^{n_2}$ are states, $u(t) \in R^m$ is the control. The system (1a)~(1b) is called the nonstandard singularly perturbed systems if the matrix A_{22} is singular.

We find the optimal control $u(t), t \in [0, \infty]$, which minimizes

$$J = \min_{u} \{ \frac{1}{2} \int_{0}^{\infty} (x^{T} Q x + u^{T} R u) dt \}, \tag{2}$$

In this paper we study the linear-quadratic optimal regulator problem for nonstandard singularly perturbed systems by making use of the recursive technique. We first derive a generalized Riccati differntial equation by the Hamilton-Jacobi equation.

2. GENERALIZED RICCATI ALGEBRAIC EQUATION

At first, we define

$$D = \begin{bmatrix} I_{n_1} & 0 \\ 0 & \varepsilon I_{n_2} \end{bmatrix}$$
 (3a)

and

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \tag{3b}$$

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \tag{3c}$$

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{bmatrix}$$
$$= \begin{bmatrix} C_1^T \\ C_2^T \end{bmatrix} \begin{bmatrix} C_1 & C_2 \end{bmatrix}$$
(3d)

We consider the linear-quadratic optimal control problem for the nonstandard singularly perturbed systems, that is

$$D\dot{x}(t) = Ax(t) + Bu(t) \tag{4}$$

Now assume that the optimal perfomance index for the problem takes the form $V^*(Dx(t),t) = (1/2)x^TD^TP(t)x$, when the initial variable is x(t) at time t, where the $(n_1 + n_2) \times (n_1 + n_2)$ time-varying matrix P(t) satisfies the condition $D^TP(t) = P^T(t)D$.

Define

$$L(x(t), u(t), t) = (1/2)(x^T Q x + u^T R u)$$
 (5a)

$$f(x(t), u(t), t) = Ax + Bu$$
(5b)

$$W^*(x(t),t) = x^T P^T(t)$$
(5c)

sinse $D^T P = P^T D$.

By making use of Hamilton-Jacobi equation [7], i.e.

$$\frac{\partial V^*}{\partial t} = -\min_{u(t)} \{ L(x(t), u(t), t) + W^* f(x(t), u(t), t) \}$$
(6)

we have

$$x^{T} D^{T} \dot{P} x = -\min_{u(t)} \{ x^{T} Q x + u^{T} R u + 2x^{T} P^{T} (A x + B u) \}$$
 (7)

where $(\partial V^*/\partial t) = (1/2)x^T D^T \dot{P}x$ sinse $D^T P = P^T D$. Carring out minimization on the right-hand side of (7) gives

$$u^*(t) = -R^{-1}B^T P(t)x(t)$$
 (8)

Substituting (8) into (7) yield

$$x^{T}D^{T}Px = -x^{T}[Q + A^{T}P + P^{T}A - P^{T}BR^{-1}B^{T}P]x$$
 (9)

The equation holds for all x(t). Therefore, we obtain a generalized Riccati differential equation

$$D^{T}\dot{P} = -Q - A^{T}P - P^{T}A + P^{T}BR^{-1}B^{T}P(10a)$$

$$D^T P = P^T D \tag{10b}$$

Since the infinite-horizen problem can be considerd as a limiting case of the finite-horizen problem, we can obtain a generalized Riccati algebraic equation by letting $\dot{P}(t)=0$.

$$A^{T}P + P^{T}A - P^{T}BR^{-1}B^{T}P + Q = 0 {(11a)}$$

$$D^T P = P^T D \tag{11b}$$

3. RECURSIVE ALGOLITHM

Consider the generalized Riccati algebraic equation (11a)~(11b). Partitioning (11b) subject to (3a) we get the following equations

$$D^{T}P = P^{T}D$$

$$\Leftrightarrow \begin{bmatrix} I & 0 \\ 0 & \varepsilon I \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

$$= \begin{bmatrix} P_{11}^{T} & P_{21}^{T} \\ P_{12}^{T} & P_{22}^{T} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & \varepsilon I \end{bmatrix}$$

$$\Leftrightarrow P = \begin{bmatrix} P_{11} & \varepsilon P_{21}^{T} \\ P_{21} & P_{22} \end{bmatrix}$$

$$P_{11} = P_{11}^{T}, P_{22} = P_{22}^{T}.$$

$$(12)$$

Partitioning (11a) subject to (3b) \sim (3d) we also get the following equations

$$A_{11}^{T}P_{11} + P_{11}^{T}A_{11} + A_{21}^{T}P_{21} + P_{21}^{T}A_{21} - P_{11}^{T}S_{11}P_{11} - P_{21}^{T}S_{22}P_{21} - P_{11}^{T}S_{12}P_{21} - P_{21}^{T}S_{12}^{T}P_{11} + Q_{11} = 0$$
 (13a)

$$\varepsilon P_{21} A_{11} + P_{22}^T A_{21} + A_{12}^T P_{11} + A_{22}^T P_{21} - \varepsilon P_{21} S_{11} P_{11} - \varepsilon P_{21} S_{12}^T P_{21} - P_{22}^T S_{12}^T P_{11} - P_{22}^T S_{22} P_{21} + Q_{12}^T = 0$$
 (13b)

$$A_{22}^{T}P_{22} + P_{22}^{T}A_{22} + \varepsilon A_{12}^{T}P_{21}^{T}$$

$$+ \varepsilon P_{21}A_{12} - P_{22}^{T}S_{22}P_{22}$$

$$- \varepsilon P_{22}^{T}S_{12}^{T}P_{21}^{T} - \varepsilon P_{21}S_{12}P_{22}$$

$$- \varepsilon^{2}P_{21}S_{11}^{T}P_{21}^{T} + Q_{22} = 0$$
(13c)

where

$$S_{11} = B_1 R^{-1} B_1^T$$

$$S_{12} = B_1 R^{-1} B_2^T$$

$$S_{22} = B_2 R^{-1} B_2^T$$

Setting $\varepsilon = 0$, we obtain the following equations

$$A_{11}^{T}P_{11} + P_{11}^{T}A_{11} + A_{21}^{T}P_{21} + P_{21}^{T}A_{21} - P_{11}^{T}S_{11}P_{11} - P_{21}^{T}S_{22}P_{21} - P_{11}^{T}S_{12}P_{21} - P_{21}^{T}S_{12}^{T}P_{11} + Q_{11} = 0$$
(14a)

$$P_{22}^T A_{21} + A_{12}^T P_{11} + A_{22}^T P_{21} - P_{22}^T S_{12}^T P_{11} - P_{22}^T S_{22}^T P_{21} + Q_{12}^T = 0$$
(14b)

$$A_{22}^T P_{22} + P_{22}^T A_{22} - A_{22}^T S_{22} P_{22} + Q_{22} = 0$$
 (14c)

The Riccati equation (14c) will produce the unique positive semidefinite stabilizing solution under the following assumption.

Assumption 1. The triple (A_{22}, B_2, Q_{22}) is stabilizable and detectable.

The matrix $A_{22} - S_{22}P_{22}$ is nonsingular if Assumption 1 hold. Therefore, we obtain the following 0-order equations

$$\bar{P}_{11}^T A_0 + A_0^T \bar{P}_{11} - \bar{P}_{11}^T S_0 \tilde{P}_{11} + Q_0 = 0$$
 (15a)

$$\bar{P}_{21} = -N_2^T + N_1^T \bar{P}_{11} \tag{15b}$$

$$A_{22}^T \bar{P}_{22} + \bar{P}_{22}^T A_{22} - \bar{P}_{22}^T S_{22} \bar{P}_{22} + Q_{22} = 0$$
 (15c)

where

$$A_{0} = A_{11} + N_{1}A_{21} + S_{12}N_{2}^{T} + N_{1}S_{22}N_{2}^{T}$$

$$S_{0} = S_{11} + N_{1}S_{12}^{T} + S_{12}N_{1}^{T} + N_{1}S_{22}N_{1}^{T}$$

$$Q_{0} = Q_{11} - N_{2}A_{21} - A_{21}^{T}N_{2}^{T} - N_{2}S_{22}N_{2}^{T}$$

$$N_{2}^{T} = D_{4}^{-T}\hat{Q}_{12}^{T}, N_{1}^{T} = -D_{4}^{-T}D_{2}^{T}$$

$$D_{2} = A_{12} - S_{12}\bar{P}_{22}, D_{4} = A_{22} - S_{22}\bar{P}_{22}$$

$$\hat{Q}_{12} = Q_{12} + A_{21}^{T}\hat{P}_{22}$$

The unique positive semidefinite stabilizing solution of (15a) exists under the following assumption.

Assumption 2. The triple(A_0, S_0, Q_0) is stabilizable and detectable.

Note. Although the expressions of the matrix A_0, S_0 and Q_0 contain the matrix \bar{P}_{22} , they do not depend on it

The 0-order solution is $O(\varepsilon)$ close to the exact one. We define errors as

$$P_{11} = \bar{P}_{11} + \varepsilon E_{11} \tag{16a}$$

$$P_{21} = \bar{P}_{21} + \varepsilon E_{21} \tag{16b}$$

$$P_{22} = \bar{P}_{22} + \varepsilon E_{22} \tag{16c}$$

The $O(\varepsilon^k)$ approximation of E will produced the $O(\varepsilon^{k+1})$ approximation of the required matrix P, which is why we are interested in finding equations for the error term and a convenient algorithm for its solution. Subtracting $(15a)\sim(15c)$ from $(13a)\sim(13c)$ and using $(16a)\sim(16c)$ we arrive at the following expression for the error equation.

$$E_{11}^{T}D_{0} + D_{0}^{T}E_{11} + V^{T}H_{1}^{T} + H_{1}V$$
$$-V^{T}H_{3}V - \varepsilon H_{2} = 0$$
(17a)

$$E_{11}^T D_2 + E_{21}^T D_4 + D_3^T E_{22} - H_1 = 0 (17b)$$

$$E_{22}^T D_4 + D_4^T E_{22} - H_3 = 0 (17c)$$

where

$$\begin{array}{lll} H_1 & = & -A_{11}^T P_{21}^T + P_{11}^T S_{11} P_{21}^T + P_{21}^T S_{12}^T P_{21}^T \\ & + \varepsilon (E_{11}^T S_{12} E_{22} + E_{21}^T S_{22} E_{22}) \\ H_2 & = & E_{11}^T S_{11} E_{11} + E_{21}^T S_{22} E_{21} \\ & + E_{11}^T S_{12} E_{21} + E_{21}^T S_{12}^T E_{11} \\ H_3 & = & -A_{12}^T P_{21}^T - P_{21} A_{12} + \varepsilon P_{21} S_{11} P_{21}^T \\ & + \varepsilon E_{22}^T S_{22} E_{22} + P_{21} S_{12} P_{22} \\ & + P_{22}^T S_{12}^T P_{21}^T \end{array}$$

and

$$D_0 = D_1 - D_2 D_4^{-1} D_3, V = D_4^{-1} D_3$$

$$D_1 = A_{11} - S_{11}^T \hat{P}_{11} - S_{12}^T \hat{P}_{21}$$

$$D_3 = A_{21} - S_{12}^T P_{11} - S_{22}^T \hat{P}_{21}$$

We proposed the following algorithm.

$$E_{11}^{(j+1)T}D_0 + D_0^T E_{11}^{(j+1)} = -V^T H_1^{(j)T} - H_1^{(j)}V + V^T H_3^{(j)}V + \varepsilon H_2^{(j)}$$
(18a)

$$E_{11}^{(j+1)T}D_2 + E_{21}^{(j+1)T}D_4 + D_3^T E_{22}^{(j+1)} = H_1^{(j)}(18b)$$

$$E_{22}^{(j+1)T}D_4 + D_4^T E_{22}^{(j+1)} = H_3^{(j)}$$
 (18c)

where

$$H_{1}^{(j)} = -A_{11}^{T} P_{21}^{T} + P_{11}^{T} S_{11} P_{21}^{T} + P_{21}^{T} S_{12}^{T} P_{21}^{T}$$

$$+ \varepsilon (E_{11}^{(j)T} S_{12} E_{22}^{(j)} + E_{21}^{(j)T} S_{22} E_{22}^{(j)})$$

$$H_{2}^{(j)} = E_{11}^{(j)T} S_{11} E_{11}^{(j)} + E_{21}^{(j)T} S_{22} E_{21}^{(j)}$$

$$+ E_{11}^{(j)T} S_{12} E_{21}^{(j)} + E_{21}^{(j)T} S_{12}^{T} E_{11}^{(j)}$$

$$H_{3}^{(j)} = -A_{12}^{T} P_{21}^{T} - P_{21} A_{12}$$

$$+ \varepsilon P_{21} S_{11} P_{21}^{T} + \varepsilon E_{22}^{(j)T} S_{22} E_{22}^{(j)}$$

$$+ P_{21} S_{12} P_{22} + P_{22}^{T} S_{12}^{T} P_{21}^{T}$$

4. MAIN RESULTS

The following theorem indicates the convergence features of algorithm (18a)~(18c).

Theorem 1. Under stabilizability-detectability conditions, imposed in Assumption 1 and 2, the algorithm (18a)~(18c) converges to the exact solution of E with the rate of convergence of $O(\varepsilon)$, that is

$$||E - E^{(k)}|| = O(\varepsilon^k), \quad (k = 1, 2, \cdots)$$
 (19)

or equivalently

$$||E - E^{(k+1)}|| = O(\varepsilon)||E - E^{(k)}||$$
(20)

where

$$E = \begin{bmatrix} E_{11} & E_{21} \\ E_{21}^T & E_{22} \end{bmatrix}, \ E^{(k)} = \begin{bmatrix} E_{11}^{(k)} & E_{21}^{(k)} \\ E_{21}^{(k)T} & E_{22}^{(k)} \end{bmatrix}$$

Proof. As a starting point we need to show the existence of a bounded solution of E in neighbourhood of $\varepsilon = 0$. To prove that by the implicit function theorem, it is enough to show that the corresponding Jacobian is nonsingular at $\varepsilon = 0$. The Jacobian is given by

$$J|_{\varepsilon=0} = \begin{bmatrix} J_{11} & 0 & 0 \\ J_{21} & J_{22} & J_{23} \\ 0 & 0 & J_{33} \end{bmatrix}$$
 (21)

where, using the Kronecker products representation we have

$$J_{11} = I \odot D_0 + I \odot D_0^T$$

$$J_{22} = I \odot D_4$$

$$J_{33} = I \odot D_4 + I \odot D_4^T$$

The matrix D_4 is nonsingular since Assumption 1 hold. The matrix $A_0 - S_0 \bar{P}_{11}$ is nonsingular if Assumption 2 hold. Therefore, we obtain the following equation.

$$\begin{split} A_0 - S_0 \bar{P}_{11} \\ &= A_{11} + N_1 A_{21} + S_{12} N_2^T + N_1 S_{22} N_2^T \\ &- (S_{11} + N_1 S_{12}^T + S_{12} N_1^T + N_1 S_{22} N_1^T) \bar{P}_{11} \\ &= A_{11} + N_1 A_{21} - S_{11} \bar{P}_{11} - N_1 S_{12}^T \bar{P}_{11} \\ &+ S_{12} N_2^T + N_1 S_{22} N_2^T \\ &- S_{12} N_1^T \bar{P}_{11} - N_1 S_{22} N_1^T \bar{P}_{11} \\ &= A_{11} - S_{11} \bar{P}_{11} + N_1 (A_{21} - S_{12}^T \bar{P}_{11}) \\ &- S_{12} (-N_2^T + N_1^T \bar{P}_{11}) \\ &- N_1 S_{22} (-N_2^T + N_1^T \bar{P}_{11}) \\ &= A_{11} - S_{11} \bar{P}_{11} - S_{12} \bar{P}_{21} \\ &+ N_1 (A_{21} - S_{12}^T \bar{P}_{11} - S_{22} \bar{P}_{21}) \\ &= D_1 - D_2 D_4^{-T} D_3 = D_0 \end{split}$$

The matrix D_0 is stable also. Thus, for ε sufficent small enough the Jacobian is nonsingular. Therefore we can achieve the $O(\varepsilon^k)$ approximation of E by performing only k iteration for algolihtm (18a)~(18c).

5. A NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed algorithm (18a)~(18c), we have run a simple example. We consider a nonstandard singularly perturbed systems of the form [5]

$$\begin{bmatrix} \dot{x}_1 \\ \varepsilon \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \tag{22}$$

wiht perfomance index

$$J = \frac{1}{2} \int_0^\infty (x_1^2 + x_2^2 + u^2) dt \tag{23}$$

The entries show the results obtaind for small parameter $\varepsilon = 0.01$. In the Table 1, the results are presented for the P approximation.

Tab.1. Value of P when $\varepsilon = 0.01$

20011. (0100 011			
\overline{j}	P_{11}	P_{21}	P_{22}
1	1.41414	2.41414	1.0
$\overline{2}$	1.43828	2.41414	1.02414
3	1.43799	2.41414	1.02385
4	1.43799	2.41414	1.02386
5	1.43799	2.41414	1.02386
6	1.43799	2.41414	1.02386
7	1.43799	2.41414	1.02386

By using proposed recursive algorithm, we can get the following solutions.

$$u_{pro}^* = -\begin{bmatrix} 2.41414 & 1.02386 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (24)

Where, Yue-yun Wang's presented for the exact following solutions.

$$u_{\epsilon xa}^{\star} = -\begin{bmatrix} 2.4142 & 1.0239 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (25)

It can be seen that the u_{pro}^* converge to exact solution u_{era}^* .

6. CONCLUSIONS

This paper presented a recusive algorithm for nonstandaed singularly perturbed systems. Using the recursive algorithm, the solution of optimal regulator problem for nonstandard singularly perturbed systems can be obtained with an accuracy $O(\varepsilon^k)$. As a result, the proposed technique represents a significant improvement since the existing method for the standard singularly perturbed systems can not be applied to the nonstandard singularly perturbed systems.

References

- Gajic.Z, Petkovski.D, and Shen.X, Singularly Perturbed and Weakly Coupled Linear System-a Recursive Approach, Lecture Notes in Control and Infomation Sciences, Vol.140 Berlin, Springer-Verlag, 1990.
- [2] Petar V.Kokotovic, Hassan K.Khalil, and John O'Reilly, Singular Perturbation Methods in Control, Analysis and Design, Academic Press, 1986.
- [3] Hassan K.Khalil, Feedback Control of Nonstandard Singularly Perturbed Systems, IEEE Transactions on Automatic Control, Vol.34, pp1052-1060, 1989.
- [4] Yue-Yun Wang, Song-Jiao Shi and Zhong-Jin Zhang, A Descriptor- System Approach to Singular Perturbation of Linear Regulators, IEEE Transactions on Automatic Control, Vol.33, pp370-373, 1988.
- [5] Yue-Yun Wang, Paul M. Frank, and David J. Clements. The Robustness Properties of the Linear Quadratic Regulators for Singular Systems, IEEE Trans. Automatic Control, Vol.38, No.1, pp96-100, 1993.
- [6] Hua Xu, Koichi Mizukami and Yue-Yun Wang. Connection Between the Generalized Riccati Equation and the Standard Reduced-Order Riccati Equations, submitted for publication, 1994.
- [7] Hua Xu and Koichi Mizukami, The linear-quadratic optimal regulator for continuous-time descriptor systems, a dynamic programming approach, Int. J. Systems Sciences, No.11, pp1889-1898, 1994.