• Title/Summary/Keyword: bounded control

Search Result 515, Processing Time 0.025 seconds

Delay-dependent Robust H Control of Uncertain Linear Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연과 임의 발생 외란을 고려한 불확실 선형 시스템에 대한 지연의존 강인 H 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.679-687
    • /
    • 2013
  • This paper proposes a new condition about delay-dependent robust $H_{\infty}$ control of uncertain linear systems with time-varying delay and randomly occurring disturbances. The norm bounded uncertainties are subjected to the system matrices. Based on Lyapunov stability theory, a sufficient condition for designing a controller gain such that the closed-loop systems are asymptotically stable with $H_{\infty}$ disturbance level ${\gamma}$ is formulated in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are included to show the effectiveness of the presented method.

Approximation method of nonlinear control system by linearization (비선형제어계의 선형화에 의한 근사해의 연구)

  • 양흥석;김경기
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1973
  • This paper treats with the sub-optimal control problem of noninear systems by approximation method. This method involves the approximation by linearization which provides the sub-optimal solution of non-linear control problems. The result of this work shows that, in the problem in which the controlled plant is characterized by an ordinary differential equation of first order, the solution obtained by this method coincides with the exact solution of problem. In of case of the second or higher order systems, it is proved analytically that this method of linearization produces the sub-optimal solution of the given problem. It is also shown that the sub-optimality of solution by the method can be evaluated by introducing the upper and lower bounded performance indices. Discussion is made on the procedure with some illustrative examples whose performance indices are given in the quadratic forms.

  • PDF

Robust and Reliable $H_\infty$ Control for Linear Systems with Parameter Uncertainty (파라메타 불확실성을 갖는 선형시스템에 대한 강한 신뢰 $H_\infty$제어)

  • 서창준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.498-503
    • /
    • 1993
  • In this paper, a robust and reliable H$_{\infty}$ control problem is considered for linear uncertain systems with time-varying norm-bounded uncertainty in the state matrix, which performs well despite of actuator outages. Using linear static state feedback and the quadratic stabilization with H$_{\infty}$-norm bound, a robust and reliable H$_{\infty}$ controller is obtained that stabilizes the plant and guarantees an H$_{\infty}$-norm bound constraint on disturbance attenuation for all admissible uncertainties and normal state as well as faulty state of actuators. It provides a sufficient condition for robust and reliable stabilization with H$_{\infty}$-norm bound. Reliability is guaranteed provided actuator outages only occur within a prespecified subset of actuators.tors.

  • PDF

A study on power system stabilizer using output feedback adaptive variable structure control

  • Shin, Jin-Ho;Jeong, Il-Kwon;Choi, Changkyu;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.177-182
    • /
    • 1994
  • In this paper, an output feedback adaptive variable structure control scheme is presented for stabilization of large scale power systems. An additional input signal which is called a power system stabilizer(PSS) is needed to improve the stability of a power system and to maintain the synchronization of generators. The proposed PSS scheme does not require a priori knowledge of uncertainty bounds. It is guaranteed that the closed-loop system is globally uniformly ultimately bounded by the Lyapunov stability theory. Simulation results for a multimachine power system are given to show the feasibility of the proposed scheme and the superiority of the proposed PSS in comparison with the conventional lead-lag PSS of PID-type.

  • PDF

A Design of the Decentralized Adaptive controller on Interconnected Systems (상호 연계된 시스템의 분할 적응 제어계의 설계)

  • Yun, Suk-Youl;Jun, Sang-Young;Yim, Hwa-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.393-396
    • /
    • 1989
  • This paper deals with the design of the adaptive controller using a decentralized control for Large-Scale system formed of an arbitrary interconnection of subsystem with unknown parameters, non linearity and bounded disturbance. In order to reduce the load and frequency deviations, now decentralized adaptive controllers are developed for stabilization and tracking the parameters. In the simulation studies of the decentralized adaptive control of a two-area interconnected power system, the effectiveness of the proposed adaptive is demonstrated.

  • PDF

Design of Combined Direct/Indirect Adaptive Neural Control System using Fuzzy Rule (퍼지규칙에 의한 직/간접 혼합 신경망 적응제어시스템의 설계)

  • Jang, Soon-Ryong;Choi, Jae-Seok;Lee, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.724-727
    • /
    • 1999
  • In this paper, the direct and indirect neural adaptive controller are combined based on the Lyapunov synthesis approach. The proposed adaptive controller is constructed from RBF neural network and a set of fuzzy IF-THEN rules. And the weighting parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. It is shown that all the signals in the closed-loop system are uniformly bounded under mild assumptions. The effectiveness of the proposed control scheme is demonstrated through the control of one-link rigid robotics manipulator.

  • PDF

A Novel Robust Adaptive Control Algorithm for Systems with Unknown Disturbances (미지의 외란을 가지는 시스템의 새로운 형태의 적응 제어 알고리즘)

  • Koo, Keun-Mo;Jeon, Jeong-Yeol;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.371-373
    • /
    • 1992
  • This note proposes a novel robust adaptive control algorithm for systems with unknown disturbances by introducing an additional term in the control input. This additional term is easily implementable by estimating the upper bound of the unknown disturbances. By this term, the output error can be made to be uniformly ultimately bounded in a desired region via Lyapunov second stability theorem when the relative degree of system is one.

  • PDF

Mixed $\textrm{H}_2/\textrm{H}_\infty$ Robust Control with Diagonal Structured Uncertainty

  • Bambang, Riyanto;Uchida, Kenko;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.575-580
    • /
    • 1992
  • Mixed H$_{2}$/H$_{\infty}$ robust control synthesis is considered for finite dimensional linear time-invariant systems under the presence of diagonal structured uncertainties. Such uncertainties arise for instance when there is real perturbation in the nominal model of the state space system or when modeling multiple (unstructured) uncertainty at different locations in the feedback loop. This synthesis problem is reduced to convex optimization problem over a bounded subset of matrices as well as diagonal matrix having certain structure. For computational purpose, this convex optimization problem is further reduced into Generalized Eigenvalue Minimization Problem where a powerful algorithm based on interior point method has been recently developed..

  • PDF

Convolution-based Desired Trajectory Generation Method Considering System Specifications (시스템 사양을 고려한 컨볼루션 기반 목표궤적 생성 방법)

  • Lee, Geon;Choi, Young-Jin;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.997-1005
    • /
    • 2010
  • Most motion control systems consist of a desired trajectory generator, a motion controller such as a conventional PID controller, and a plant to be controlled. The desired trajectory generator as well as the motion controller is very important to achieve a good tracking performance. Especially, if the desired trajectory is generated actively utilizing the maximum velocity, acceleration, jerk and snap as given system specifications, the tracking performance would be better. For this, we make use of the properties of convolution operator in order to generate a smooth (S-curve) trajectory satisfying the system specifications. Also, the proposed trajectory generation method is extended to more general cases with arbitrary initial and terminal conditions. In addition, the suggested trajectory generator can be easily realized for real-time implementation. Finally, the effectiveness of the suggested method is shown through numerical simulations.

Design of Adaptive Regulator for a Nonlinear Uncertain System (불확실성을 갖는 비선형 시스템의 적응 제어기 설계)

  • Jin, Ju-Wha;Yu, Kyung-Tak;Son, Young-Ik;Seo, Jin-Heo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF