• Title/Summary/Keyword: boundary scan design

Search Result 36, Processing Time 0.029 seconds

Boundary Scan Test Methodology for Multiple Clock Domains (다중 시스템 클럭 도메인을 고려한 경계 주사 테스트 기법에 관한 연구)

  • Jung, Sung-Won;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1850-1851
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

Test Methodology for Multiple Clocks Single Capture Scan Design based on JTAG IEEE1149.1 Standard (IEEE 1149.1 표준에 근거한 다중 클럭을 이용한 단일 캡쳐 스캔 설계에 적용되는 경계 주사 테스트 기법에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.980-986
    • /
    • 2007
  • Boundary scan test structure(JTAG IEEE 1149.1 standard) that supports an internal scan chain is generally being used to test CUT(circuit under test). Since the internal scan chain can only have a single scan-in port and a single scan-out port; however, existing boundary test methods can not be used when multiple scan chains are present in CUT. Those chains must be stitched to form a single scan chain as shown in this paper. We propose an efficient boundary scan test structure that adds a circuit called Clock Group Register(CGR) for multiple clocks testing within the design of multiple scan chains. The proposed CGR has the function of grouping clocks. By adding CGR to a previously existing boundary scan design, the design is modified. This revised scan design overcomes the limitation of supporting a single scan-in port and out port, and it bolsters multiple scan-in ports and out ports. Through our experiments, the effectiveness of CGR is proved. With this, it is possible to test more complicated designs that have high density with a little effort. Furthermore, it will also benefit in designing those complicated circuits.

Test Methodology for Multiple Clocks in Systems (시스템 내에 존재하는 다중 클럭을 제어하는 테스트 기법에 관한 연구)

  • Lee, Il-Jang;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1840-1841
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

An Efficient Technique to Protect AES Secret Key from Scan Test Channel Attacks

  • Song, Jae-Hoon;Jung, Tae-Jin;Jung, Ji-Hun;Park, Sung-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • Scan techniques are almost mandatorily adopted in designing current System-on-a-Chip (SoC) to enhance testability, but inadvertently secret keys can be stolen through the scan test channels of crypto SoCs. An efficient scan design technique is proposed in this paper to protect the secret key of an Advanced Encryption Standard (AES) core embedded in an SoC. A new instruction is added to IEEE 1149.1 boundary scan to use a fake key instead of user key, in which the fake key is chosen with meticulous care to improve the testability as well. Our approach can be implemented as user defined logic with conventional boundary scan design, hence no modification is necessary to any crypto IP core. Conformance to the IEEE 1149.1 standards is completely preserved while yielding better performance of area, power, and fault coverage with highly robust protection of the secret user key.

A Design of FPGA Self-test Circuit Reusing FPGA Boundary Scan Chain (FPGA 경계 스캔 체인을 재활용한 FPGA 자가 테스트 회로 설계)

  • Yoon, Hyunsik;Kang, Taegeun;Yi, Hyunbean
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.70-76
    • /
    • 2015
  • This paper introduces an FPGA self-test architecture reusing FPGA boundary scan chain as self-test circuits. An FPGA boundary scan cell is two or three times bigger than a normal boundary scan cell because it is used for configuring the function of input/output pins functions as well as testing and debugging. Accordingly, we analyze the architecture of an FPGA boundary scan cell in detail and design a set of built-in self-test (BIST) circuits in which FPGA boundary scan chain and a small amount of FPGA logic elements. By reusing FPGA boundary scan chain for self-test, we can reduce area overhead and perform a processor based on-board FPGA testing/monitoring. Experimental results show the area overhead comparison and simulation results.

A Design of New Real Time Monitoring Embedded Controller using Boundary Scan Architecture (경계 주사 구조를 이용한 새로운 실시간 모니터링 실장 제어기 설계)

  • 박세현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.570-578
    • /
    • 2001
  • Boundary scan architecture test methodology was introduced to facilitate the testing of complex printed circuit board. The boundary scan architecture has a tremendous potential for real time monitoring of the operational status of a system without interference of normal system operation. In this paper, a new type of embedded controller for real time monitoring of the operational status of a system is proposed and designed by using boundary scan architecture. The proposed real time monitoring embedded controller consists of test access port controller and an embedded controller proposed real time monitoring embedded controller using boundary scan architecture can save the hard-wire resource and can easily interface with boundary scan architecture chip. Experimental results show that the real time monitoring using proposed embedded controller is more effective then the real time monitoring using host computer.

  • PDF

IEEE1149.1 Boundary Scan Design for the Detection of Delay Defects (지연고장 탐지를 위한 IEEE 1149.1 바운다리스캔 설계)

  • Kim, Tae-Hyeong;Park, Seong-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.1024-1030
    • /
    • 1999
  • IEEE 1149.1 바운다리스캔은 보드 수준에서 고장점검 및 진단을 위한 테스트 설계기술이다. 그러나, 바운다리스캔 제어기의 특성상 테스트 패턴의 주입에서 관측까지 2.5 TCK가 소요되므로, 연결선상의 지연고장을 점검할 수 없다. 본 논문에서는 UpdateDR 신호를 변경하여, 테스트 패턴 주입에서 관측까지 1 TCK가 소요되게 함으로써, 지연고장 점검을 가능하게 하는 기술을 소개한다. 나아가서, 정적인 고장점검을 위한 테스트 패턴을 개선해 지연고장 점검까지 가능하게 하는, N개의 net에 대한 2 log(n+2) 의 새로운 테스트패턴도 제안한다. 설계와 시뮬레이션을 통해 지연고장 점검이 가능함을 확인하였다.Abstract IEEE 1149.1 Boundary-Scan is a testable design technique for the detection and diagnosis of faults on a board. However, since it takes 2.5TCKs to observe data launched from an output boundary scan cell due to inherent characteristics of the TAP controller, it is impossible to test delay defects on the interconnect nets. This paper introduces a new technique that postpones the activation of UpdateDR signal by 1.5 TCKs while complying with IEEE 1149.1 standard. Furthermore we have developed 2 log(n+2) , where N is the number of nets, interconnect test patterns to test delay faults in addition to the static interconnect faults. The validness of our approach is verified through the design and simulation.

Design and Display of Solids Using CSG and Boundary Representation (CSG 표현과 경계 표현을 이용한 입체의 설계 및 화면표시)

  • Park, Kee-Hyun;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 1990
  • This paper presents a method for rapid wire frame drawing of the 3D objects represented by the CSG scheme. When the two CSG trees are combined into one, the intersection parts of the polygons constituting the object corresponds to each subtree are computed, and the boundary representation of the combined object is obtained according to the given combinational operator and stored in the root node. The boundary representation in the root node is used in the wireframe drawing of the object and later computation of boundary representation. Bezier surface is taken as one of the primitive object the scan-line algorithm is used, which subdivides each scan-line into the spans where no polygon is intersected, and renders each span with the CSG representation of the object.

  • PDF

Cargo Inspection System Design and Boundary-Scan Test (화물 검색시스템 구현 및 Boundary_Scan Test)

  • Kim, Bong-Su;Kim, In-Su;Yoo, Sun-Won;Kim, Sung-Won;Lee, Sun-Wha;Yi, Yun;Han, Bum-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.197-200
    • /
    • 2002
  • We newly developed the procedures of X-ray Cargo inspection system with acquisition of multi-channel data, analog to digital converter and post logic circuit which is controlled by the FPGA. The IEEE1149.1 standard defines a four-wire serial interface(a fifth wire is optional)to access complex integrated circuits(ICs) such as PLD. This paper describes that Boundary_Scan test method applied to our home made cargo inspection system.

  • PDF

An Efficient IEEE 1149.1 Boundary Scan Design for At-Speed Delay Testing (지연고장 점검을 위한 효율적인 IEEE 1149.1 바운다리스캔 설계)

  • Kim, Tae-Hyung;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.728-734
    • /
    • 2001
  • Delay defects on I/O pads, interconnections of a board, or interconnections among embedded cores can not be tested with the current IEEE 1149.1 boundary scan design. This paper introduces a simple design technique which slightly modifies the TAP controller to test delay defects at system speed. Experimental design shows that the technique proposed requires much less area than a commercial approach.

  • PDF