• Title/Summary/Keyword: bottom sediment

Search Result 451, Processing Time 0.033 seconds

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

Measurements of Mid-frequency Bottom Loss in Shallow Water of the Yellow Sea (서해 천해환경에서의 중주파수 해저면 반사손실 측정)

  • Yoon, Young Geul;Lee, Changil;Choi, Jee Woong;Cho, Sungho;Oh, Suntaek;Jung, Seom-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.423-431
    • /
    • 2015
  • KIOST-HYU joint acoustics experiment was performed on the western shallow water off the Taean peninsula in the Yellow Sea in May 2013. In this paper, mid-frequency (6~16 kHz) bottom loss data measured in a grazing angle range of $17{\sim}60^{\circ}$ are presented and compared to the predictions obtained using a Rayleigh reflection model. The sediment structure of the experimental site was characterized by multi-layered sediment and the components of the surficial sediment consisted of various types of particles with a mean grain size of $5.9{\phi}$. The model predictions obtained using the mean grain size were not in agreement with the measured bottom loss, and those obtained using the grain size of $4{\phi}$, which was estimated by an inversion process, showed a best fit to the measurements. It would be because the standard deviation of the gain-size distribution of surficial sediment is $4.3{\phi}$, which is much larger than those of other areas around the experimental site. Finally, the model predictions obtained using the geoacoustic parameters estimated from the inversion process for the surficial sediment layer and those corresponding to the mean grain size of $1.3{\phi}$ for lower layer are reasonably agreement with the measured bottom loss data.

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

Geochemical Behaviors and Environmental Changes of Bottom Sediments in Streams of Gwangju Metropolitan City (광주광역시를 관류하는 하천 표층퇴적물의 지구화학적 거동과 환경 변화)

  • Shin, Sang-Eun;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • Considering to the geochemical behaviors and environmental changes of bottom sediments in streams, Gwangju metropolitan city, this study focuses to analyses on grain sizes, metal elements and organic carbons in sediment samples from Yeongsan and Hwangryong rivers, and Gwangju stream. In the sediments, contents of Cu, Zn, Pb, P and TOC were highly variable, in the case of Gwangju stream particularly. Yenogsan and Hwangryong rivers are influenced by grain sizes and surrounding geological settings and Gwangju stream is connected to organic matters related to life fouls and so forth, with respect to the geochemical behaviorof bottom sediments. Li, Zn, Pb and Cu were enriched in Yeongsan and Hwangryong rivers and Li, Cu, Zn, Pb and P enriched in Gwangju stream, respectively. In the heavy metal contamination of above drainages, the site mutually connected Seobang(GJ 4) with Donggye(GJ 7) streams shows the highest values, in peculiar. It is inferred that those contamination values are mainly related with urban foul waters in the city.

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

A Model for Vertical Transport of Fine Sediment and Bed Erodibility in a Wave-Dominated Environment (파랑지배환경에서의 미세퇴적물 수직이동에 관한 모형)

  • Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.277-288
    • /
    • 1995
  • Prediction of turbidity due to fine-grained bed material load under wave action is critical to any assessment of anthropogenic impart on the coastal or lacustrine environment Waves tend to loosen mud deposits and generate steep suspension concentration gradients, such that the sediment load near the bottom is typically orders of magnitude higher than that near the surface. In a physically realistic but simplified manner, a simple mass conservation principle has been used to simulate the evolution of fine sediment concentration profiles and corresponding erodible bed depths under progressive, nonbreaking wave action over mud deposits. Prior field observations support the simulated trends. which reveal the genesis of a near-bed. high concentration fluidized mud layer coupled with very low surficial sediment concentrations. It is concluded that estimation of the depth of bottom erosion requires an understanding of mud dynamics and competent in situ sediment concentration profiling. Measurement of sediment concentration at the surface alone, without regard to the near-bed zone, can lead to gross underestimation of the erodible bed depth.

  • PDF

Wave Reflection from Porous Ocean Sediment With Depth Dependent Properties (깊이 방향의 변화가 있는 해저 퇴적물에서 반사 특성)

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.1-7
    • /
    • 2006
  • This study examines the reflection characteristic of a thin transition layer of the ocean bottom showing variability with respect to depth. In order to model the surficial sediment simply, we reduce the Biot model to the depth dependent wave equation for the pseudo fluid using the fluid approximation (weak frame approximation). From the reduced equation, the difference between the inherent frequency dependency of the reflection and the frequency dependency resulting from a thin transition layer is investigated. Using Tang's depth porosity profile model of the surficial sediment [D. Tang et al., IEEE J. Oceanic Eng., vol.27(3), 546-560(2002)], we numerically simulated the reflection loss and investigated the contribution from both frequency dependencies. In addition, the effects of different sediment type and varying depth structure of the sediment are discussed.

Remote Seabed Classification Based on the Characteristics of the Acoustic Response of Echo Sounder: Preliminary Result of the Suyoung Bay, Busan (측심기의 음향반사 특성을 이용한 해저퇴적물의 원격분류: 부산 수영만의 예비결과)

  • Kim Gil Young;Kim Dae Choul;Kim Yang Eun;Lee Kwang Hoon;Park Soo Chul;Park Jong Won;Seo Young Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2002
  • Determination of sediment type is generally based on ground truthing. This method, however, provides information only for the limited sites. Recent developments of remote classification of seafloor sediments made it possible to obtain continuous profiles of sediment types. QTC View system, which is an acoustic instrument providing digital real-time seabed classification, was used to classify seafloor sediment types in the Suyoung Bay, Pusan. QTC View was connected to 50 kHz echo sounder, All parameters of QTC View and echo sounder are uniformly kept during survey. By ground truthing, the sediments are classified into seven types, such as slightly gravelly sand, slightly gravelly sandy mud, gravelly muddy sand, clayey sand, sandy mud, slightly gravelly muddy sand, and rocky bottom. By the first remote classification using QTC View, four sediment types are clearly identified, such as slightly gravelly sand, gravelly mud, slightly gravelly muddy sand, and rocky bottom. These are similar to the result of the second survey. Also the result of remote classification matches well with that of ground truthing, but for sediment type determined by minor component. Therefore, QTC View can effectively be used for remote classification of seafloor sediments.

Tidal Current and Suspended Sediment Transport in the Keum Estuary,West Coast of Korea (錦江 鹽河口에서의 潮流와 浮游堆積物 이동)

  • 오임상;나태경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.147-162
    • /
    • 1995
  • The circulation due to tidal current and river discharge, and the associated suspended suspended sediment transport in macrotidal Keum Estuary, were studied through a series of field measurements of tidal currents and suspended sediment concentration at three anchored stations from 1990 through 1992. From the measurements, the following results were obtained. At the seaward entrance of the estuary, the veritical profiles of the ebb and flood currents were almost symmetric. At the southern channel the flood current was dominant in the whole water column, but in the northern channel the ebb current was dominant in the surface and bottom layers and the flood current was dominant in the intermediate layer. The maximum velocity of the tidal current in the southern channel was 174 cm/s during flood tide in the intermediate layer. The maximum velocity, 148 cm/s in the northern channel also appeared during flood tide in the intermediate layer. However, in the surface and bottom layers, the maximum velocities were 110.6 cm/s during ebb tide and 92.1 cm/s during flood tide, respectively. The type of the Keum Estuary can be categorized to 'Type 3' of Hansen and Rattray's scheme. The water column of the estuary during the flood tide becomes stratified, and after high water the ebb current reduces the density difference and the water column becomes turbulent. The lower layer of the water column is generally turbulent. The largest sediment flux 20.61 ton/s was found in the southern channel during flood current in the lowest river discharge (May, 1991), while the smallest flux, 0.65 ton/s in the northern channel in the lowest tidal range (July, 1992). The stronger bottom shear velocity for the present study area seems to erode the bottom sediments during the flood tide, and the relatively long duration of the ebb tide to transport the suspended sediments. Under normal river discharge conditions, the suspended sediments are transported mainly through the southern channel. However, under high river discharge condition the suspended sediment transport is dominant through the northern channel.

  • PDF