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Abstract

This study examines the reflection characteristic of a thin transition layer of the ocean bottom showing variability 
with respect to depth. In order to model the surficial sediment simply, we reduce the Biot model to the depth 
dependent wave equation fbr the pseudo fluid using the fluid approximation (weak frame approximation). From the 

reduced equation, the difference between the inherent frequency dependency of the reflection and the frequency 
dependency resulting from a thin transition layer is investigated. Using Tang's depth porosity profile model of the 
surficial sediment [D. Tang et aL, IEEE J. Oceanic Eng., vol.27(3), 546-560(2002)], we numerically simulated the 

reflection loss and investigated the contribution from both frequency dependencies. In addition, the effects of different 
sediment type and varying depth structure of the sediment are discussed.

Keywords^ Biot Model, Fluid Approximation of the Biot Model, Reflection Coejficient, Inherent Frequency Dependency, 

Global Matrix Method.

I. Introduction

It is known that the wave in the ocean sediment is dispersive, 
which means that the sound speed and attenuation are dependent 

on frequency, and the reflection coefficient at an interface 
between water and sediment becomes frequency dependent[l].

If the geophysical properties of the ocean sedime메 vary 
significantly with depth, the reflection coefficient will exhibit an 
additional frequency dependency[2] besides the inherent 
frequency dependency due to dispersion. This dependency, due to 

interaction of the reflected waves within the depth dependent 
sediment, is governed by geometric factors such as the thickness 
of the transition layer and slope of variability. We will call it the 
geometric dispersion in this paper.

In recent fine-scale measurements of the surficial ocean 
sediment, a transition layer having thickness extending from a 
few mm to a few hundred mm has been fbund[3-4]. When the
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thickness of this transition layer is comparable to the wavelength, 

which corresponds to frequencies of at least several tens kHz, the 
transition layer will exhibit geometric dispersion. This means that 
distinction between the inherent and geometric frequency 

dependency of the reflection becomes obscure in mid-high 
frequency range. This obscurity can be a cause of error during 

the process of estimating the geophysical properties from 
reflection measurements.

A few authors have investigated the frequency dependency of 
the reflection from the ocean sediment. Chotiros[5] showed that 
the reflection measurement of sandy sediment significantly 
deviates from viscoelastic wave theory and confirmed the 
importance of the use of the geophysical model (Biot model) in 
ocean sediment.

Carbo[6] numerically showed that the transient layer reduces 
the amplitude of the reflected wave at high frequency, treating 

the ocean bottom as an acoustic medium approximated by the 
model suggested by Hovem for Biofs fast wave speed. Lyons 
and Orsi[3] confirmed the effect of the transition layer of varying 
density on the reflection. Masao[7] obtained the reflection 
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characteristic from the transition layer of the surficial sediment 
using OASES Biot the experimental result. All these studies 
separately have mentioned the inherent frequency dependency or 
the geometric frequency dependency of reflection from the ocean 
sediment. However, study on the effect of their combination has 
not been performed.

In this paper, we consider the reflection from the ocean 

sediment of varying geophysical properties. The ocean sediment 

is modeled by the fluid approximation of Biot model, which 
makes it an efficient numerical calculation model.

In order to describe the depth-dependent property of the 
sediment, we adopt the porosity profile presented by Tang et al. 

[4]. The numerical results are obtained using the direct global 
matrix approach[8].

In Sec. II, continuity equation and momentum equation for 

fluid approximation form of Biot model will be derived. In 
addition, the depth-dependent wave equation and the reflection 
coefficient will be obtained. The characteristic of the porosity 

profile and the choice of the Biot model parameters will be 
explained in Sec. III. Sec. IV will show the effect of the 

combination of both frequency dependencies. Sec. V is a 
conclusion.

II. FL니D APPROXIMATION OF 티OT MODEL 
AND THE REFLECTION COEFFICIENT

2.1. 티OT MODEL
Review of the Biot model employed will be given followed by 

simplification into an equivalent fluid model, which is used in 
the numerical analysis thereafter.

(a) Kinematics

If Uf is the fluid displacement vector,二 is the solid 

displacement vector, and Bis the porosity the strains are defined 

as [9],

->
e = V- u (1)

£.. = —(U + U - ■}
v 2 (2)

—> —» —>
Z = . (3)

Here, e is the volumetric strain,is the linear strain in the 

solid constituent, and 4 is the fhiid increment.

(b) Stress-strain relation
The stress-strain relations for the total stress in the porous 

medium and the pore fluid pressure are

气=((H (X)句 + 2“勺 (4)

Pf=M，-Ce (5)

where % is the kronecker delta.

Moduli M , C, and H are respectively,

M=Kr /[1-Kb/Kr^p (Kr / Kf -1)] (6)

C = (『KJK」)M (7)

H = (lr&/K「)C+、+ (4/3)“ (8)

where Kr is the s이id bulk modulus, is the fluid bulk 

modulus,匕 is the frame bulk modulus, and 卩 is the shear 

modulus.

(c) Momentum equation
The momentum equations are expressed as

d2 -> -*
3”p 히+/)

J T T
이 + fnU) +

qF(K)au
K 引

(9)

(10)

where P/ is the fluid density, Ps is the solid density and 

P = & is the total density of the porous medium.
=性

Also, is the added mass density with the added mass 

parameter a, nis the fluid viscosity and 虹is the permeability.

The viscous correction factor Fg can be expressed as

()4. 270)

rm

요&으 V 厕
whereand "바苛

(11)

Here co is the angular frequency and a is the pore size 
parameter. For convenience, we will use the following relation,
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where dis the grain size[10].

(12)
Pf~P 

~ jnF(K)U
Pf~m+ } 3 (19)

22 FLUID APPROXIMATION

(a) Continuity equation

If the frame bulk modulus Kb and shear modulus “ are 

assumed to vanish, then equations (4) and (5) become

匂=經.("+{/)爲 (13)

-» ->
- Pf=K0.(u+U、) (14)

where K = ((1-幻/虬邛/K"

The averaged displacement vector can be expressed as

Substituting equation (19) into equation (17) and the reciprocal 

of equation (19) into equation (18), we obtain one equation as a 

function of u and one equation as a function of U. Adding them 

and using the averaged displacement of equation (15), we obtain 

the following equation.

p z d2um

(20) 
where

2 . jq F (Q、Pf 7)

為侦» = inF(K}
(21)

(1一丿3)及+丿8 uf = u+U = um.

(15)

Using the averaged displacement vector, equations (13) and 

(14) become as follows.

p = -KVum (16)

where the pressure P = pf= -(1/3)^.

If we take the partial derivative with respect to time, equation 
(16) is seen to be the continuity equation of fluid medium that is 
rearranged by the equation of state and the linearization.

(b) Momentum equation

Under the same assumption of vanishing & and equations 
(9) and (10) can be written as

T T J T T
V(KV • (u+ U)) = g戸(p u+ pR) (17)

V(KV.(=+&)) g(p^+扁)+ 끄뽀흐 (仰

dr ks at (18)

If we subtract equation (17) from equation (18) in the case of 
harmonic motion, the relation between the relative displacement 
and the solid displacement is obtained as follows.

Equation (20) is the momentum equation for a porous medium 

with the assumption of the frame elastic modulus being zero. It is 

in the same fbnn as the momentum equation of a fluid medium 
except for the complex density, which we will call as an 

effective density. We mention that the idea of this effective 
density was first proposed in Williams' work[ll].

(c) Depth-dependent wave equation
We take the divergence of equation (20) and use equation (16) 

to obtain the governing equation in terms of pressure,

财㈣v.(财@)Vp)=而糖 (22)

,、I K
c((o)=-------

where 丫喝 @). (23)

Equation (23) is the complex speed dependent on frequency. The 

accuracy of this approximation is confirmed in Ref 11. As 
frequency increases or the frame elastic modulus weakens, its 
accuracy gets better.

Meanwhile, if the displacements of the fluid and the solid move 
together, equation (23) becomes much simpler because the effective 
density becomes total density, which is known as Wood model.

2.3. THE REFLEC기ON COEFFI이ENT
We consider the reflection of a plane wave from an interface
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between homogenous water and sediment showing variability 

with respect to depth. In the water, the sound speed is denoted 
by q and the density is denoted by Pi. Using the bottom 

impedance Z(a)), reflection coefficient can be written as

r@)= Z(a»/sing—C]Q/sinS
Z(co)/sin0r + 어)] /sin0j (24)

where 仇 is a grazing angle of the incident wave and 

sinQ - Jl -ct)2cos2if the sediment is homogenous 

with respect to depth, the bottom impedance can be written using 

equation (20) for the interface condition as

Table 1. The parameters used in numerical simulation,

Parameter Soft Hard
Grain bulk mod니니s 3.6e+10Pa 3 6e+10^
디니d b니k mod니us 2.25e+9 Pa 225e+9 Pa

Grain density 2650 奴/* 2650 炕/게3

Fluid density 1000炳/京 1000奴/冰

Added mass parameter 0.25 0 25
Grain size 0.00038 c/n 0 008cm

Dynamic viscosity 0.001 kg/m-s 0 001 kg/m s

S니rficial porosity 0.9 0.7
Bottom porosity 0 76 0 47

Fitting parameter
v=3 5 V=3 5
«=0.6 «=0.6

Z(a)) = e(a))peff((o)

(25)

The frequency dependency of equation (25) is the inherent 
property of the ocean sediment.

If the sediment has the variability with respect to depth, the 
bottom impedance can be expressed using equation (20) for the 
interface condition and equation (22) for the pressure in the 

sediment as fbllows[12].

using the result measured by X-ray CT method. Tang et al. [4] 
also reported a useful relation using the conductivity 

measurement. The relation of Lyon and Orsi decays as (1 + 衣)이 

and that of Tang et al. decays as e~z"- The depth profile of Lyons 
and Orsi is smoother than that of Tang et al. for small depth and 

decays more slowly. In this paper, we choose the relation of 

Tang et al. The relation of Tang et al. is expressed as

&=" + (眼-队)

Z@) = a)peff (co) 顼业뿌沪
(26)

where z = 0is the depth at the interface.
Equation (26) contains the effect of the inherent and geometric 

frequency dependency of the reflection.

III. DEPTH-DEPENDENT GEOPHYSICAL 
PROPERTIES

In Biot model, the microscopic structure of the sediment can 

be explained by its porosity, permeability, added mass parameter 
and pore size parameter.

In the case of depth-dependent sediment, these four properties 
will vary with depth. But the precise measurement of surficial 
sediment depth dependent properties is hard. Also, the 
measurement of all the microscopic properties has not been 
carried out until now.

Fortunately, the porosity has been measured with remarkable 
precision. Lyon and Orsi[3] presented the depth-porosity relation

Where 们 is the porosity at z = 0,馬 is the 
z -)。。，and v and n are fitting parameters.

Fig.

(27) 
porosity as

1 al. The

Fig. 1. The depth-porosity profile. 

4 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.25, NO.1E



fitting parameter chosen by Tang et al. and the geophysical 

properties by Stoll are used. The values used in the calculation 
are given in Table I.

Aside from the porosity, other microscopic properties will be 
referred from previous empirical relations or treated as a constant 
value. The pore size parameter is obtained using equation (12) 
and the added mass parameter is considered as a constant value. 
The variability of the permeability is obtained with the 
Kozeny-Carman relation,

k,工丄
36幻(1" )2 (28)

where kQ is 5[6].

Other properties-i.e., density, bulk modulus and viscosity- are 

considered to be constant. Since the depth-dependency of the 
sediment is a response to bioturbation and hydrodynamic effects, 
these properties will have a low variability with respect to 
depth[3, 13].

(
튼
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a

Fig. 2. The example of the division of segment layer.

IV. NUMERICAL RESULT

In this section, we will present the numerical result using the 
data given in Table I. The porosity of the upper sediment is 

chosen a value satisfying the depth-porosity profile with a 

positive gradient.
As mentioned previously, the numerical result is obtained by 

using direct global matrix approach[8]. The DGM approach 
begins by dividing the inhomogeneous layer into several 
homogeneous layers. Here, we divide the transition layer 
uniformly based on porosity, not on depth, as shown in Fig. 2. 
This method has proven to produce faster convergence. To 

achieve a good approximation at high frequency, sediment layer 
is divided into 300 layers.

Fig. 3 shows the reflection coefficient as a function of grazing 
angle for frequencies of 10 kHz and 100 kHz for both soft and 
hard bottom. To investigate the effect of transition layer, the 

results are compared to no gradient case, meaning the sediment is 

considered as a homogeneous one. In Fig. 3, the effect of the 
depth-dependent property of the sediment is very small at 10 

kHz, but at 100 kHz the sediment with gradient deviates from the 
sediment without gradient. Near normal incidence, the difference 

is about 2.7 dB for the soft bottom and the difference is about 
2.2 dB for the hard bottom. This plainly 아lows the effect of a 
thin transition layer.

Since the effect of transition is most pronounced at normal 
incidence, we plot the normal reflection coefficient for varying 

frequency in Fig. 4. Solid curve represents homogeneous 
sediment, which only includes the effect of the inherent 
frequency dispersion. The difference of the normal reflection loss

Fig. 3. The reflection loss versus the 
for soft and hard bottom.

grazing angle at two freq니encies
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between 102 Hz and 106 Hz is about IdB for both soft and hard 

bottom. The inherent frequency dispersion can be considered to 
be relatively weak. In addition, the hard bottom exhibits a set 
down at a relatively lower frequency because the critical 

frequency of the hard bottom is lower. The gradient case includes 
both the inherent and geometric frequency dispersion of the 

sediment. We can observe that the gradient case curve falls down 
more steeply than solid curve at high frequency for both bottoms. 

This is because the effect of the upper part of surficial sediment 
increases as frequency increases. Since its property is softer than 
that of the sediment at large depth, the reflection loss is seen to 

increase. If the surficial porosity is close to 1, the difference 
between the gradient and no gradient case becomes greater.

It is interesting that the deviation of solid and dash-dot curve 
happens at about 7 kHz, irrespective of the kind of bottom. This 
implies that the geometric frequency dispersion depends only on 

the depth structure of the sediment.

Fig. 5 shows the bottom density estimated from the normal 
reflection coefficient of Fig. 4. In fact, the quantity equivalent to 

the density, which is inverted from the reflection coefficient of 
equation (24) at normal incidence, isn't the real density. It is in 

the form of a complex density and q나ite different from the total 
density of the sediment.

But, if we assume the phase of the bottom impedance is 
negligible, we can obtain a quantity equivalent to the density.

With this assumption,

Z(w) = abs(Z(G)))ej^} « abs(Z(a)))

where 0 («) = tan-1 (Im(Z (to)) / Re(Z (co))).

The apparent density,

,，Qbs(Z(a)))\
= 사双----- ) =

Cref

Mi 1+沥"(©)) 

abs{cref) l-abs(R(a)))

(29)

(30)

M Soft Bottom

(D
고 ss-

Eo_«scvb -Ecoz

(b) Hard Bottom

Frequency (Hz) 10°

can be derived from equation (24) and (29).

Here, &矿 is the reference speed, which is used to separate the 

quantity having the dimension of the density. We chose the 
reference speed as the sound speed of the half infinite sediment.

In Fig. 5, dash curve is the result obtained by modeling the 
bottom as an acoustic medium with half infinite sound speed and 

total density. At low frequency, all the apparent densities (solid 
and dash-dot curve) are close to dash curve. This is because the 

inherent and geometrical frequency dependency is negligible at 
low frequency. At high frequency, the apparent densities are 
lowered as the reflection loss increases. This result is to be 
expected from Fig. 4.

Fig. 4. The normal reflection loss vers나s freq니ency for soft and hard 
bottom.

(a) Soft Bottom
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Fig. 5. The apparent density estimated from the normal reflection loss 
vers니s frequency for soft and hard bottom.

V. Conclusion

The reflection from surficial sedime마 having a transition layer 

is examined using a numerical model. Surficial sedime매 is 
considered to have the variability with respect to depth and is 
modeled by the fluid approximation of Biot model. We derived 
continuity equation, momentum equation, and depth-dependent 

wave equation for the surficial sediment. In order to investigate 
the depth-dependent property of the sediment, the depth-porosity 
profile of Tang et al. is used. Numerical simulation is performed 
using Direct Global Matrix method.

Considering the effect of the thin layer varying with respect to 
depth, we show that the normal reflection loss from sediment
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increases at high frequency. The normal reflection loss with a 
homogeneous bottom is 11 dB at 100 kHz, but the normal 
reflection loss with the thin varying layer is 15.6dB at the same 
frequency fbr the hard bottom. It means that the thin varying 

layer at high frequency makes the sediment soft. The effect of 
the inherent frequency dependency is to raise the normal 
reflection loss at high frequency. Although its effect is smaller, it 

can affect the geophysical property estimated from the normal 

reflection loss.
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