• Title/Summary/Keyword: bottlenecks

Search Result 206, Processing Time 0.025 seconds

Negative Effects of Inbreeding of Artificially Bottlenecked Drosophila melanogaster Populations

  • Kim, Baek-Jun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 2021
  • Detrimental effects of inbreeding have been studied by many researchers for a long time. However, only a few studies have shown the occurrence of inbreeding depression due to evolutionary changes as a purging process. In this study, two different populations (inbreeding and outbreeding) of Drosophila melanogaster were compared to assess inbreeding effects on artificial population bottlenecks. For inbreeding conditions, a couple of D. melanogaster (one virgin and one male) were selected from an inbred population and cultured in a vial. For outbreeding conditions, a couple of D. melanogaster were selected from different populations and cultured in a vial. There were significant differences in body lengths of adults, but not in other parameters such as the total number of adults, the rate of survival, and the rate of wing mutants. The mean body length of adults of outbreeding populations was longer than that of inbreeding populations in the first generation (G1; P = 0.004), but not in the second generation (G2; P = 0.066). Although the other three parameters (total number of adults, rate of survival, and rate of wing mutants) showed differences in their mean values between inbreeding and outbreeding populations, these differences were not statistically significant. This might be due to genetic purging. This study demonstrated one additional experimental case related to inbreeding depression in artificial bottlenecked populations. Further studies are necessary to confirm the clear interaction between inbreeding depression and genetic purging using more generations and replicates (or samples) of D. melanogaster.

Evaluation of GPU Computing Capacity for All-in-view GNSS SDR Implementation

  • Yun Sub, Choi;Hung Seok, Seo;Young Baek, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2023
  • In this study, we design an optimized Graphics Processing Unit (GPU)-based GNSS signal processing technique with the goal of designing and implementing a GNSS Software Defined Receiver (SDR) that can operate in real time all-in-view mode under multi-constellation and multi-frequency signal environment. In the proposed structure the correlators of the existing GNSS SDR are processed by the GPU. We designed a memory structure and processing method that can minimize memory access bottlenecks and optimize the GPU memory resource distribution. The designed GNSS SDR can select and operate only the desired GNSS or desired satellite signals by user input. Also, parameters such as the number of quantization bits, sampling rate, and number of signal tracking arms can be selected. The computing capability of the designed GPU-based GNSS SDR was evaluated and it was confirmed that up to 2400 channels can be processed in real time. As a result, the GPU-based GNSS SDR has sufficient performance to operate in real-time all-in-view mode. In future studies, it will be used for more diverse GNSS signal processing and will be applied to multipath effect analysis using more tracking arms.

Stretchable Energy Harvester Based on Piezoelectric Composites and Kirigami Electrodes (압전 복합소재와 키리가미 섬유전극을 적용한 스트레쳐블 에너지 하베스팅 소자)

  • Boran Kim;Dong Yeol Hyeon;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.525-530
    • /
    • 2023
  • Stretchable piezoelectric energy harvester (S-PEHs) based on composite materials are considered one of the potential candidates for realizing wearable self-powered devices for smart clothing and electronic skin. However, low energy conversion performance and expensive stretchable electrodes are major bottlenecks hindering the development and application of S-PEHs. Here, we fabricated the S-PEH by adopting the piezoelectric composites with enhanced stress transfer properties and kirigami-patterned textile electrodes. The optimum contents of piezoelectric BaTiO3 nanoparticles inside the carbon nanotube/ecoflex composite were selected as 30 wt% considering the trade-off between stretchability and energy harvesting performance of the device. The final S-PEH shows an output voltage and mechanical stability of ~5 V and ~3,000 cycles under repeated 150% of tensile strain, respectively. This work presents a cost-effective and scalable way to fabricate stretchable piezoelectric devices for self-powered wearable electronic systems.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Artificial Intelligence Semiconductor and Packaging Technology Trend (인공지능 반도체 및 패키징 기술 동향)

  • Hee Ju Kim;Jae Pil Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Recently with the rapid advancement of artificial intelligence (AI) technologies such as Chat GPT, AI semiconductors have become important. AI technologies require the ability to process large volumes of data quickly, as they perform tasks such as big data processing, deep learning, and algorithms. However, AI semiconductors encounter challenges with excessive power consumption and data bottlenecks during the processing of large-scale data. Thus, the latest packaging technologies are required for AI semiconductor computations. In this study, the authors have described packaging technologies applicable to AI semiconductors, including interposers, Through-Silicon-Via (TSV), bumping, Chiplet, and hybrid bonding. These technologies are expected to contribute to enhance the power efficiency and processing speed of AI semiconductors.

A Study for Digital Transformation Based on Collaboration Master Plan for Shipbuilding & Marine Engineering Industry

  • Seung-Uk So;Myeong-Ki Han;Young-Hun Kim;Jun-Soo Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.190-197
    • /
    • 2023
  • In the shipbuilding and marine industry, digital transformation activities are promoted primarily by large shipyards. However, bottlenecks are observed across value chains, and digital transformation effects are reducing because of the cost and technical challenges encountered by supplies. In this study, we proposed a win-win cooperation model for large, small, and medium-sized companies using digital transformation based on the characteristics of the shipbuilding and marine industry through case studies. We investigated the digital transformation progress in German and Korean small and medium-sized enterprises (SMEs). In addition, we identified information-sharing methods and management challenges encountered in enterprise resource planning and manufacturing execution systems in the collaboration process of pipes, panels, blocks, etc. of SMEs that are suppliers of a Korean shipyard, and clarified communication by building a platform based on a common format between shipyards and suppliers. Further, we proposed a standard model of a digital transformation system for enhancing the collaboration between large companies and suppliers and proposed a basic plan including strategies to efficiently and effectively build a digital transformation system based on the standard model.

A Study of How Blockchain Technology is Applied to Trade Finance and Its Challenges (블록체인 기술의 무역금융 적용과 과제에 관한 연구)

  • Yun-Seok Hur;Jong-il Moon
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.269-289
    • /
    • 2022
  • The COVID-19 pandemic has disrupted supply chains across the world. When the pandemic broke out, the disruptions were mainly due to the lockdowns imposed in various countries. The WTO has predicted that the pandemic might cause world trade to decline by 13 to 32 per cent in 2020. This paper will examine the implications of COVID-19 on digital trade, particularly the use of blockchain in the Asia Pacific. The Asia Pacific (particularly Singapore and Hong Kong) is a leader in the use of digital technologies. This paper will thus attempt to draw out lessons from the first movers for the rest of Asia. It will examine the bottlenecks in the application of this technology in the Asia Pacific countries, and the need for regulatory changes in the Asia-Pacific. It will trace the technology's barriers to adoption, both as regards interoperability, and regulatory framework. The advantages of blockchain technology in trade finance are clear; it can promote trade efficiency, mitigate risk and expand trade to other regions. However, earlier efforts to introduce digital technologies have failed. More collaborative efforts are required, so that networks can connect seamlessly on a single technology platform, and meet the demand for trade finance. The COVID-19 pandemic seems to have provided an enabling environment for the intensification of digital efforts, increasing their urgency; should these measures indeed successfully occur, they will improve the resiliency of supply chains across the region.

Outlook on genome editing application to cattle

  • Gyeong-Min Gim;Goo Jang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.10.1-10.11
    • /
    • 2024
  • In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.

Analysis of Workforce Scheduling Using Adjusted Man-machine Chart and Simulation (보완 다중 활동 분석표와 시뮬레이션을 이용한 작업자 운영 전략 분석)

  • Hyowon Choi;Heejae Byeon;Suhan Yoon;Bosung Kim;Soondo Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Determining the number of operators who set up the machines in a human-machine system is crucial for maximizing the benefits of automated production machines. A man-machine chart is an effective tool for identifying bottlenecks, improving process efficiency, and determining the optimal number of machines per operator. However, traditional man-machine charts are lacking in accounting for idle times, such as interruptions caused by other material handling equipment. We present an adjusted man-machine chart that determines the number of machines per operator, incorporating idleness as a penalty term. The adjusted man-machine chart efficiently deploys and schedules operators for the hole machining process to enhance productivity, where operators have various idle times, such as break times and waiting times by forklifts or trailers. Further, we conduct a simulation validation of traditional and proposed charts under various operational environments of operators' fixed and flexible break times. The simulation results indicate that the adjusted man-machine chart is better suited for real-world work environments and significantly improves productivity.

Heat Conduction Analysis and Improvement of a High-Power Optical Semiconductor Source Using Graphene Layers (그래핀을 적용한 고출력 반도체 광원의 열특성 분석)

  • Ji, Byeong-Gwan;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.168-171
    • /
    • 2015
  • The heat flow characteristics of a high-power optical semiconductor source have been analyzed using a 3D CFD commercial tool, and the thermal resistance values for each of the layers revealed the places for thermal bottlenecks to be improved. As the heat source of a LD (Laser Diode) has a small volume and a narrow surface, the effective thermal cross-sectional area near it is also quite small. It was possible to expand the cross-sectional area effectively by using graphene layers on the TIM (Thermal Interface Material) layers of a LD chip. The effective values of heat resistance for the layers are compared to confirm the improvement effect of the graphene layers before and after, which can be considered to expand the thermal cross section of the heat transfer path.